资源描述:
《高中数学《圆的标准方程》导学案 北师大版必修2》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、第8课时 圆的标准方程1.正确掌握圆的标准方程及其推导过程.2.会根据圆心坐标、半径熟练地写出圆的标准方程以及由圆的标准方程熟练地求出圆心和半径;由不同的已知条件求得圆的标准方程.3.掌握点与圆位置关系的判定.古今中外都有很多的圆形建筑,如中国的北京天坛、罗马的圆形竞技场等,如何在直角坐标系中研究圆的方程和性质呢?前面我们已经学过直线方程的概念、直线斜率及直线方程的常见表达式,我们知道了关于x,y的二元一次方程都表示一条直线,那么曲线方程会有怎样的表达式呢?这节课让我们一起来学习最常见的曲线方程——圆的标准方程.问题1:(1)圆的定义:平面内到一定点距离
2、等于定长的点的轨迹称为 圆 .定点是 圆心 ,定长是圆的 半径 .圆心和半径分别确定了圆的位置和大小. (2)圆的标准方程:设圆的圆心坐标为A(a,b),半径为r(其中a、b、r都是常数,r>0).设M(x,y)为这个圆上任意一点,那么点M满足的条件是P={M
3、
4、MA
5、=r},由两点间的距离公式知点M适合的条件可以表示为 =r ,化简得: (x-a)2+(y-b)2=r2 .① 若点M(x,y)在圆上,由上述讨论可知,点M的坐标适合方程①;反之,若点M(x,y)的坐标适合方程①,这说明点M与圆心的距离是r,即点M在圆心为A的圆上.所以我们把方程①称为圆心
6、为A(a,b),半径为r的圆的方程,即圆的标准方程.问题2:圆的标准方程的特点: (x-a)2+(y-b)2=r2 是二元二次方程,括号内变数x,y的系数都是1,展开后没有xy项.点(a,b)、r分别表示圆心的坐标和圆的半径.当圆心在原点即C(0,0)时,方程为 x2+y2=r2 . 问题3:坐标平面内的点与圆的位置关系:设点M(x0,y0),则根据圆的标准方程可得坐标平面内的点和圆的关系如下:(1)点在圆外⇔ (x0-a)2+(y0-b)2>r2 ;(2)点在圆上⇔ (x0-a)2+(y0-b)2=r2 ;(3)点在圆内⇔ (x0-a)2+(y0-b)
7、28、取值范围是( ).A.-11D.a=±13.已知点A(3,-2),B(-5,4),以线段AB为直径的圆的标准方程为 . 4.已知圆与y轴相切,圆心在直线x-3y=0上,且这个圆经过点A(6,1),求该圆的标准方程.求圆的标准方程根据下列条件,求圆的标准方程:(1)圆心为点C(-2,1),并过点A(2,-2)的圆.(2)过点(0,1)和点(2,1),半径为.判断点与圆的位置关系已知两点P(-5,6)和Q(5,-4),求以P、Q为直径端点的圆的标准方程,并判断点A(2,2),B(1,8),C(6,5
9、)是在圆上,在圆内,还是在圆外.根据已知条件求圆中参数的范围已知圆C:(x-1)2+(y-2)2=25,直线l:(2m+1)x+(m+1)y-7m-4=0(m∈R).求证:不论m取什么实数,直线l与圆恒交于两点.求圆心在点C(1,3),并与直线3x-4y-6=0相切的圆的标准方程.以原点为圆心,且过点(3,-4)的圆的标准方程是 ,那么点(2,3)在圆 (内、上、外). 已知圆的标准方程是:(x+m)2+(y-2)2=(m+1)2+3,求半径最小时的圆心坐标和半径.1.圆C:(x-2)2+(y+1)2=3的圆心坐标是( ).A.(2,1)
10、 B.(2,-1)C.(-2,1)D.(-2,-1)2.已知圆的方程为(x-2)2+(y-3)2=4,则点P(3,2)( ).A.是圆心B.在圆上C.在圆内D.在圆外3.圆心为(0,4),且过点(3,0)的圆的标准方程为 . 4.若点P(1,1)为圆C:(x-3)2+y2=9的弦MN的中点,求弦MN所在的直线方程. (2011年·安徽卷)若直线3x+y+a=0过圆x2+y2+2x-4y=0的圆心,则a的值为( ).A.-1 B.1C.3D.-3 考题变式(我来改编):第8课时 圆的标准方程知识体系梳理问题1:(1)圆 圆心 半径 (2
11、)=r (x-a)2+(y-b)2=r2问题2:(x-a)2+(y-b)2=r2