高中数学 2.2.3变量间的相关关系目标导学 新人教a版必修3

高中数学 2.2.3变量间的相关关系目标导学 新人教a版必修3

ID:29144783

大小:6.51 MB

页数:8页

时间:2018-12-17

高中数学 2.2.3变量间的相关关系目标导学 新人教a版必修3_第1页
高中数学 2.2.3变量间的相关关系目标导学 新人教a版必修3_第2页
高中数学 2.2.3变量间的相关关系目标导学 新人教a版必修3_第3页
高中数学 2.2.3变量间的相关关系目标导学 新人教a版必修3_第4页
高中数学 2.2.3变量间的相关关系目标导学 新人教a版必修3_第5页
资源描述:

《高中数学 2.2.3变量间的相关关系目标导学 新人教a版必修3》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、2.3 变量间的相关关系1.了解相关关系、线性相关、回归直线、最小二乘法的定义.2.会作散点图,并能利用散点图和定义判断两个变量之间是否具有相关关系.3.会求回归直线方程,并能用回归直线方程解决有关问题.1.相关关系(1)定义:如果两个变量中一个变量的取值一定时,另一个变量的取值带有一定的______性,那么这两个变量之间的关系,叫做相关关系.(2)两类特殊的相关关系:如果散点图中点的分布是从______角到______角的区域,那么这两个变量的相关关系称为正相关,如果散点图中点的分布是从______角到______角的区域,那么这两个变量的相关关系称为负相关.两个变量间的关

2、系分为三类:一类是确定性的函数关系,如正方形的边长与面积的关系;另一类是变量间确实存在关系,但又不具备函数关系所要求的确定性,它们的关系是带有随机性的,这种关系就是相关关系,例如,某位同学的“物理成绩”与“数学成绩”之间的关系,我们称它们为相关关系;再一类是不相关,即两个变量间没有任何关系.【做一做1】下列图形中具有相关关系的两个变量是(  )2.线性相关(1)定义:如果两个变量散点图中点的分布从整体上看大致在一条______附近,我们就称这两个变量之间具有线性相关关系,这条直线叫做__________.(2)最小二乘法:求线性回归直线方程=x+时,使得样本数据的点到它的__

3、____________最小的方法叫做最小二乘法,其中,的值由以下公式给出:其中,是回归方程的____________,是回归方程在y轴上的______.线性回归分析涉及大量的计算,形成操作上的一个难点,可以利用计算机非常方便地作散点图、回归直线,并能求出回归直线方程.因此在学习过程中,要重视信息技术的应用.【做一做2】某单位为了解用电量y(千瓦时)与气温x(℃)之间的关系,随机统计了某4天的用电量与当天气温,并制作了对照表:气温/℃181310-1用电量/千瓦时24343864由表中数据得线性回归方程=x+中≈-2,则≈__________.答案:1.(1)随机 (2)左下

4、 右上 左上 右下【做一做1】C A项中显然任给一个x都有唯一确定的y和它对应,是一种函数关系;B项也是一种函数关系;C项中从散点图可以看出所有点看上去都在某条直线附近波动,具有相关关系,而且是一种线性相关关系;D项中所有的点在散点图中没有显示任何关系,因此变量间是不相关的.2.(1)直线 回归直线 (2)距离的平方和 - 斜率 截距【做一做2】60 ==10,==40,则=-≈40+2×10=60.1.相关关系与函数关系的异同剖析:相同点:两者均是指两个变量的关系.不同点:①函数关系是一种确定的关系.如匀速直线运动中时间t与路程s的关系;相关关系是一种非确定的关系.如一块农

5、田的水稻产量与施肥量之间的关系.②函数关系是一种因果关系,而相关关系不一定是因果关系,可能是伴随关系.2.线性回归直线方程的性质剖析:(1)回归直线过样本数据的中心.所谓样本数据的中心,对于单变量样本数据而言,平均数是样本数据的中心;对于以(xn,yn)为样本数据而言,(,)为样本点的中心,根据最小二乘法原理,回归直线一定过样本点的中心.(2)回归直线的单调性与样本数据的相关性.如果样本数据对应的点具有线性相关关系,从回归直线方程来看,当系数b>0时,直线单调递增,此时这两个变量正相关;当b<0时,直线单调递减,此时这两个变量负相关.3.理解最小二乘法剖析:结合最小二乘法的发

6、展过程和在实际生活中的应用来了解最小二乘法.如果以不同精度多次观测一个或多个未知量,为了求出各未知量的最可靠值,各观测量必须改为正数,使其所改正数的平方乘以观测值的权数的总和为最小,这种方法称为最小二乘法,所谓“权”就是表示观测结果质量相对可靠程度的一种权衡值.最小二乘法的思想是通过最小化误差的平方和找到一组数据的最佳函数匹配,是用最简单的方法求得一些绝对不可知的真值,而令误差平方之和为最小,是处理各种观测数据测量方差的一种基本方法,是一种数学优化技术.在统计中,主要是利用最小二乘法求线性回归方程,这是最小二乘法思想的应用.最小二乘法不仅是数理统计中一种常用的方法,在工业技术

7、和其他科学研究中也有着广泛的应用,比如洪水实时预报等.题型一判断相关关系【例题1】设对变量x,y有如下观察的数据:x151152153154156157158159160162163164y40414141.54242.5434445454645.5(1)画出散点图.(2)判断变量x,y是否具有相关关系?如果具有相关关系,那么是正相关还是负相关?分析:对于给定一组观察数据,可以借助作散点图这样有效的手段进行处理.反思:两个随机变量x和y是否具有相关关系的确定方法:①散点图法:通过散点图,观察它们的分布是

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。