高中数学 1.3.3球的表面积与体积学案 新人教a版必修2

高中数学 1.3.3球的表面积与体积学案 新人教a版必修2

ID:29144090

大小:131.50 KB

页数:3页

时间:2018-12-17

高中数学 1.3.3球的表面积与体积学案 新人教a版必修2_第1页
高中数学 1.3.3球的表面积与体积学案 新人教a版必修2_第2页
高中数学 1.3.3球的表面积与体积学案 新人教a版必修2_第3页
资源描述:

《高中数学 1.3.3球的表面积与体积学案 新人教a版必修2》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、球的表面积与体积1.球的体积和表面积2.等积变换3.轴截面的应用1.(1)将一个气球的半径扩大1倍,它的体积扩大到原来的几倍?(2)一个正方体的顶点都在球面上,它的棱长是acm,求球的体积.(3)一个球的体积是100cm2,试计算它的表面积(取3.14,结果精确到1cm2,可用计算器).参考答案:1.(1)8倍;(2)(3)104.经典习题例1.已知过球面上三点A、B、C的截面到球心的距离等于球半径的一半,且AC=BC=6,AB=4,求球面面积与球的体积.【分析】可以用球的截面性质。即截面小圆的圆心到球心的线段垂直于截面小圆平面.

2、【解析】如图,设球心为O,球半径为R,作OO1⊥平面ABC于O1,由于OA=OB=OC=R,则O1是△ABC的外心.设M是AB的中点,由于AC=BC,则O1∈CM.设O1M=x,易知O1M⊥AB,则O1A=,O1C=CM–O1M=–x又O1A=O1C∴.解得则O1A=O1B=O1C=.在Rt△OO1A中,O1O=,∠OO1A=90°,OA=R,由勾股定理得.解得.故.图4—3—9例2.如图所示棱锥P–ABCD中,底面ABCD是正方形,边长为a,PD=a,PA=PC=,且PD是四棱锥的高.(1)在这个四棱锥中放入一个球,求球的最大半

3、径;(2)求四棱锥外接球的半径.【分析】(1)当所放的球与四棱锥各面都相切时球的半径最大,即球心到各个面的距离均相等,联想到用体积分割法求解.(2)四棱锥的外接球的球心到P、A、B、C、D五点的距离均为半径,只要找出球心的位置即可.球心O在过底面中心E且垂直于底面的垂线上.【解析】(1)设此球半径为R,最大的球应与四棱锥各个面都相切,设球心为S,连结SA、SB、SC、SP,则把此四棱锥分为五个棱锥,设它们的高均为R.,,,S□ABCD=a2.VP–ABCD=VS–PDA+VS–PDC+VS–ABCD+VS–PAB+Vs–PBC,,

4、BACDPF图4—3—10,所以,,即球的最大半径为.(2)法一:设PB的中点为F.因为在Rt△PDB中,FP=FB=FD,在Rt△PAB中,FA=FP=FB,在Rt△PBC中,FP=FB=FC,所以FP=FB=FA=FC=FD.所以F为四棱锥外接球的球心,则FP为外接球的半径.法二:球心O在如图EF上,设OE=x,EA=,又即球心O在PB中点F上.【评析】方法二为求多面体(底面正多面边形)外接球半径的通法;求多面体内切球半径经常采用体积分割求和方法.

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。