欢迎来到天天文库
浏览记录
ID:29143550
大小:179.00 KB
页数:4页
时间:2018-12-17
《高中数学 1.1.1(1)回归分析的基本思想及其初步应用(一)教学案 新人教a版选修1-2》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、(文)§1.1.1回归分析的基本思想及其初步应用(一)【学习目标】1.通过典型案例的探究,进一步了解回归分析的基本思想、方法及初步应用;2.了解线性回归模型与函数模型的差异,了解衡量两个变量之间线性相关关系得方法---相关系数.【重点难点】重点:了解线性回归模型与函数模型的差异,了解判断刻画模型拟合效果的方法-相关指数和残差分析.难点:解释残差变量的含义,了解偏差平方和分解的思想.【知识链接】(预习教材P2~P4,找出疑惑之处)问题1:“名师出高徒”这句彦语的意思是什么?有名气的老师就一定能教出厉害的学生吗?这两者之间是否有关?复习1
2、:函数关系是一种关系,而相关关系是一种关系.复习2:回归分析是对具有关系的两个变量进行统计分析的一种常用方法,其步骤:.【学习过程】※学习探究实例从某大学中随机选取8名女大学生,其身高/cm和体重/kg数据如下表所示:编号12345678身高165165157170175165155170体重4857505464614359问题:画出散点图,求根据一名女大学生的身高预报她的体重的回归方程,并预报一名身高为172cm的女大学生的体重.解:由于问题中要求根据身高预报体重,因此选自变量x,为因变量.(1)做散点图:从散点图可以看出和有比较好
3、的相关关系.(2)==所以于是得到回归直线的方程为(3)身高为172cm的女大学生,由回归方程可以预报其体重为问题:身高为172cm的女大学生,体重一定是上述预报值吗?思考:线性回归模型与一次函数有何不同?新知:用相关系数r可衡量两个变量之间关系.计算公式为r=r>0,相关,r<0相关;相关系数的绝对值越接近于1,两个变量的线性相关关系,它们的散点图越接近;,两个变量有关系.※典型例题例1某班5名学生的数学和物理成绩如下表:学生学科ABCDE数学成绩(x)8876756462物理成绩(y)7865706260(1)画散点图;(2)求物
4、理成绩y对数学成绩x的回归直线方程;(3)该班某学生数学成绩为96,试预测其物理成绩;变式:该班某学生数学成绩为55,试预测其物理成绩;小结:求线性回归方程的步骤:※动手试试练.(07广东文科卷)下表提供了某厂节能降耗技术改造后生产甲产品过程中记录的产量(吨)与相应的生产能耗(吨标准煤)的几组对照数据(1)请画出上表数据的散点图;(2)请根据上表提供的数据,用最小二乘法求出关于的线性回归方程;(3)已知该厂技改前100吨甲产品的生产能耗为90吨标准煤.试根据(2)求出的线性同归方程,预测生产100吨甲产品的生产能耗比技改前降低多少吨标
5、准煤?(参考数值)【学习反思】※学习小结1.求线性回归方程的步骤:2.线性回归模型与一次函数有何不同※知识拓展在实际问题中,是通过散点图来判断两变量之间的性关系的,【基础达标】※自我评价你完成本节导学案的情况为().A.很好B.较好C.一般D.较差※当堂检测(时量:5分钟满分:10分)计分:1.下列两个变量具有相关关系的是()A.正方体的体积与边长B.人的身高与视力C.人的身高与体重D.匀速直线运动中的位移与时间2.在画两个变量的散点图时,下面哪个叙述是正确的()A.预报变量在x轴上,解释变量在y轴上B.解释变量在x轴上,预报变量在y
6、轴上C.可以选择两个变量中任意一个变量在x轴上D.可选择两个变量中任意一个变量在y轴上3.回归直线必过()A.B.C.D.4.越接近于1,两个变量的线性相关关系.5.已知回归直线方程,则时,y的估计值为.【拓展提升】一台机器使用的时间较长,但还可以使用,它按不同的转速生产出来的某机械零件有一些会有缺点,每小时生产有缺点零件的多少,随机器的运转的速度而变化,下表为抽样试验的结果:转速x(转/秒)1614128有缺点零件数y(件)11985(1)画散点图;(2)求回归直线方程;(3)若实际生产中,允许每小时的产品中有缺点的零件最多为10个
7、,那么机器的运转速度应控制在什么范围内?
此文档下载收益归作者所有