资源描述:
《2018届高考数学一轮复习 专题六 概率与统计课时作业(含解析)文》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、概率与统计1.(2017·晋中模拟)某校学生参加了“铅球”和“立定跳远”两个科目的体能测试,每个科目的成绩分为A,B,C,D,E五个等级,该校某班学生两科目测试成绩的数据统计如图所示,其中“铅球”科目的成绩为E的学生有8人.(1)求该班学生中“立定跳远”科目的成绩为A的人数;(2)已知该班学生中恰有2人的两科成绩等级均为A,在至少有一科成绩等级为A的学生中,随机抽取2人进行访谈,求这2人的两科成绩等级均为A的概率.解:(1)因为“铅球”科目的成绩等级为E的学生有8人,所以该班有8÷0.2=40人,所以该班学生中“立定跳远
2、”科目的成绩等级为A的人数为40×(1-0.375-0.375-0.15-0.025)=40×0.075=3.(2)由题意可知,至少有一科成绩等级为A的有4人,其中恰有2人的两科成绩等级均为A,另2人只有一个科目成绩等级为A.设这4人为甲、乙、丙、丁,其中甲、乙是两科成绩等级都是A的同学,则在至少有一科成绩等级为A的学生中,随机抽取2人进行访谈,基本事件空间为Ω={(甲,乙),(甲,丙),(甲,丁),(乙,丙),(乙,丁),(丙,丁)},一共有6个基本事件.设“随机抽取2人进行访谈,这2人的两科成绩等级均为A”为事件M,
3、所以事件M中包含的基本事件有1个,为(甲,乙),则P(M)=.2.(2017·贵州七校联考)从某校高三年级学生中抽取40名学生,将他们高中学业水平考试的数学成绩(满分100分,成绩均为不低于40分的整数)分成六段:[40,50),[50,60),…,[90,100]后得到如图的频率分布直方图.(1)若该校高三年级有640人,试估计这次学业水平考试的数学成绩不低于60分的人数及相应的平均分(平均分保留到百分位);(2)若从[40,50)与[90,100]这两个分数段内的学生中随机选取2名学生,求这2名学生成绩之差的绝对值不
4、大于10的概率.解:(1)由于图中所有小矩形的面积之和等于1,所以10×(0.005+0.01+0.02+a+0.025+0.01)=1,解得a=0.03.根据频率分布直方图,成绩不低于60分的频率为1-10×(0.005+0.01)=0.85.由于高三年级共有学生640人,可估计该校高三年级数学成绩不低于60分的人数为640×0.85=544.可估计不低于60分的学生数学成绩的平均分为≈77.94.(2)成绩在[40,50)分数段内的人数为40×0.05=2,成绩在[90,100]分数段内的人数为40×0.1=4,若从
5、这6名学生中随机抽取2人,则总的取法有15种,如果2名学生的数学成绩都在[40,50)分数段内或都在[90,100]分数段内,那么这2名学生的数学成绩之差的绝对值一定不大于10.如果一个成绩在[40,50)分数段内,另一个成绩在[90,100]分数段内,那么这2名学生的数学成绩之差的绝对值一定大于10.则所取2名学生的数学成绩之差的绝对值不大于10的取法为7种,所以所求概率P=.3.(2017·广东七校联考)甲、乙两位学生参加数学竞赛培训,在培训期间,他们参加的5次预赛成绩记录如下:甲 82 82 79 95 87乙 9
6、5 75 80 90 85(1)用茎叶图表示这两组数据;(2)从甲、乙两人的成绩中各随机抽取一个,求甲的成绩比乙高的概率;(3)①若甲、乙两人的成绩的平均数与方差;②若现要从中选派一人参加数学竞赛,根据你的计算结果,你认为选派哪位学生参加合适?解:(1)作出茎叶图如下:(2)记甲被抽到的成绩为x,乙被抽到的成绩为y,用数对(x,y)表示基本事件:(82,95),(82,75),(82,80),(82,90),(82,85),(82,95),(82,75),(82,80),(82,90),(82,85),(79,95),(
7、79,75),(79,80),(79,90),(79,85),(95,95),(95,75),(95,80),(95,90),(95,85),(87,95),(87,75),(87,80),(87,90),(87,85),基本事件总数n=25.记“甲的成绩比乙高”为事件A,事件A包含基本事件:(82,75),(82,80),(82,75),(82,80),(79,75),(95,75),(95,80),(95,90),(95,85),(87,75),(87,80),(87,85),事件A包含的基本事件数m=12,所以P(
8、A)==,所以甲的成绩比乙高的概率为.(3)①甲=(70×1+80×3+90×1+9+2+2+7+5)=85,乙=(70×1+80×2+90×2+5+0+5+0+5)=85,s=[(79-85)2+(82-85)2+(82-85)2+(87-85)2+(95-85)2]=31.6,s=[(75-85)2+(80-85