欢迎来到天天文库
浏览记录
ID:28967816
大小:197.08 KB
页数:9页
时间:2018-12-15
《年中考数学复习教材回归知识讲解+例题解析+强化训练(一元二次方程)》由会员上传分享,免费在线阅读,更多相关内容在应用文档-天天文库。
1、2009年中考数学复习教材回归知识讲解+例题解析+强化训练一元二次方程◆知识讲解1.一元二次方程的一般形式ax2+bx+c=0(a,b,c是常数,a≠0)2.一元二次方程的解法(1)直接开平方法;(2)配方法;(3)公式法;(4)因式分解法.一元二次方程的求根公式是x=(b2-4ac≥0).3.二元三项式ax2+bx+c=a(x-x1)(x-x2).其中x1,x2是关于x的方程ax2+bx+c=0的两个实数根.4.一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2-4ac.当△>0时,方程有两
2、个不相等的实数根x1=,x2=;当△=0时,方程有两个相等实数根x1=x2=-;当△<0时,方程没有实数根.5.若一元二次方程ax2+bx+c=0(a≠0)的两个实数根为x1,x2,则x1+x2=-,x1x2=.6.以x1,x2为根的一元二次方程可写成x2-(x1+x2)x+x1x2=0.7.使用一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2-4ac解题的前提是二次项系数a≠0.8.若x1,x2是关于x的方程ax2+bx+c=0的两根,则ax12+bx1+c=0,ax22+bx2+c=0.
3、反之,若ax12+bx1+c=0,ax22+bx2+c=0,且x1≠x2,则x1,x2是关于x的一元二次方程ax2+bx+c=0的两根.9.一元二次方程的应用列一元二次方程解应用问题的步骤和解法与前面讲过的列方程解应用题的方法步骤相同,但在解题中心须注意所求出的方程的解一定要使实际问题有意义,凡不满足实际问题的解(虽然是原方程的解)一定要舍去.用心 爱心 专心◆例题解析例1(2006,四川绵阳)若0是关于x的方程(m-2)x2+3x+m2+2m-8=0的解,求实数m的值,并讨论此方程解的情况.【分析】这是
4、一道确定待定系数m的一元二次方程,又讨论方程解的情况的优秀考题,需要考生具备分类讨论的思维能力.【解答】由题知:(m-2)×02+3×0+m2+2m-8=0,∴m2+2m-8=0.利用求根公式可解得m1=2,或m2=-4.当m=2时,原方程为3x=0,此时方程只有一个解,x=0.当m=-4时,原方程可化为2x2-x=0,解得x1=0,x2=.例2(2006,北京海淀)已知下列n(n为正整数)个关于x的一元二次方程:x2-1=0(1)x2+x-2=0(2)x2+2x-3=0(3)……x2+(n-1)x-n=
5、0(n)(1)请解上述一元二次方程(1),(2),(3),(n);(2)请你指出这n个方程的根具有什么共同特点,写出一条即可.【分析】由具体到一般进行探究.【解答】(1)<1>(x+1)(x-1)=0,所以x1=-1,x2=1.<2>(x+2)(x-1)=0,所以x1=-2,x2=1.<3>(x+3)(x-1)=0,所以x1=-3,x2=1.……(x+n)(x-1)=0,所以x1=-n,x2=1.(2)比如:共同特点是:都有一个根为1;都有一个根为负整数;两个根都是整数根等.【点评】本例从教材要求的
6、基本知识出发,探索具有某种特点的方程的解题规律及方程根与系数之间的关系,注重了对学生观察、类比及联想等数学思想方法的考查.例3(2005,黄冈市)张大叔从市场上买回一块矩形铁皮,他将此矩形铁片的四个角各剪去一个边长为1m的正方形后,剩下的部分刚好能围成一个容积为15m3用心 爱心 专心的无盖长方体运输箱.且此长方体运输箱底面的长比宽多2m,现已知购买这种铁皮每平方米需20元钱,问张大叔购回这张矩形铁皮共花了多少元钱?【分析】首先化无形为有形,画出示意图,分清底面、侧面,底面的长与宽和长方体的高各用什么数或
7、式子表示,然后利用体积相等列出方程求解.【解答】设这种运输箱底部宽为xm,则长为(x+2)m,依题意,有x(x+2)×1=15化简,得x2+2x-15=0.∴x1=-5(舍去)x2=2.所求铁皮的面积为:(3+2)(5+2)m2=35m2.所购矩形铁皮所需金额为:35×20元=700元.答:张大频购回这张矩形铁皮花了700元钱.【点评】画出示意图是解题的关键.另外本题所采用的是间接设未知数的方法.若直接设出购买铁皮所需金额就困难了.◆强化训练一、填空题1.方程(2x-1)(3x+1)=x2+2化为一般形式
8、为______,其中a=____,b=____,c=____.2.方程(x-1)2=2的解是_______.3.关于x的一元二次方程mx2+nx+m2+3m=0有一个根为零,则m的值等于_____.4.配方:x2-6x+_____=(x-____)2;x2-x+______=(x-_____)2.5.方程(x-1)(x+2)(x-3)=0的根是_______.6.关于x的一元二次方程x2+mx+n=0的两个根为x1=1,x2=
此文档下载收益归作者所有