全国各地2014年中考数学真题分类解析汇编 25矩形菱形与正方形

全国各地2014年中考数学真题分类解析汇编 25矩形菱形与正方形

ID:28854055

大小:891.00 KB

页数:52页

时间:2018-12-14

全国各地2014年中考数学真题分类解析汇编 25矩形菱形与正方形_第1页
全国各地2014年中考数学真题分类解析汇编 25矩形菱形与正方形_第2页
全国各地2014年中考数学真题分类解析汇编 25矩形菱形与正方形_第3页
全国各地2014年中考数学真题分类解析汇编 25矩形菱形与正方形_第4页
全国各地2014年中考数学真题分类解析汇编 25矩形菱形与正方形_第5页
资源描述:

《全国各地2014年中考数学真题分类解析汇编 25矩形菱形与正方形》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、矩形菱形与正方形一、选择题1.(2014•安徽省,第10题4分)如图,正方形ABCD的对角线BD长为2,若直线l满足:①点D到直线l的距离为;②A、C两点到直线l的距离相等.则符合题意的直线l的条数为(  ) A.1B.2C.3D.4考点:正方形的性质.分析:连接AC与BD相交于O,根据正方形的性质求出OD=,然后根据点到直线的距离和平行线间的距离相等解答.解答:解:如图,连接AC与BD相交于O,∵正方形ABCD的对角线BD长为2,∴OD=,∴直线l∥AC并且到D的距离为,同理,在点D的另一侧还有一条直

2、线满足条件,故共有2条直线l.故选B.点评:本题考查了正方形的性质,主要利用了正方形的对角线互相垂直平分,点D到O的距离小于是本题的关键. 2.(2014•福建泉州,第5题3分)正方形的对称轴的条数为(  ) A.1B.2C.3D.4考点:轴对称的性质分析:根据正方形的对称性解答.解答:解:正方形有4条对称轴.故选D.点评:本题考查了轴对称的性质,熟记正方形的对称性是解题的关键. 3.(2014•珠海,第2题3分)边长为3cm的菱形的周长是(  ) A.6cmB.9cmC.12cmD.15cm考点:菱形

3、的性质.分析:利用菱形的各边长相等,进而求出周长即可.解答:解:∵菱形的各边长相等,∴边长为3cm的菱形的周长是:3×4=12(cm).故选:C.点评:此题主要考查了菱形的性质,利用菱形各边长相等得出是解题关键. 4.(2014•广西玉林市、防城港市,第6题3分)下列命题是假命题的是(  ) A.四个角相等的四边形是矩形B.对角线相等的平行四边形是矩形 C.对角线垂直的四边形是菱形D.对角线垂直的平行四边形是菱形考点:命题与定理.分析:根据矩形的判定对A、B进行判断;根据菱形的判定方法对C、D进行判断.

4、解答:解:A、四个角相等的四边形是矩形,所以A选项为真命题;B、对角线相等的平行四边形是矩形,所以B选项为真命题;C、对角线垂直的平行四边形是菱形,所以C选项为假命题;D、对角线垂直的平行四边形是菱形,所以D选项为真命题.故选C.点评:本题考查了命题与定理:判断事物的语句叫命题;正确的命题称为真命题,错误的命题称为假命题;经过推理论证的真命题称为定理. 5.(2014•毕节地区,第8题3分)如图,菱形ABCD中,对角线AC、BC相交于点O,H为AD边中点,菱形ABCD的周长为28,则OH的长等于() A

5、.3.5B.4C.7D.14考点:菱形的性质;直角三角形斜边上的中线;三角形中位线定理分析:根据菱形的四条边都相等求出AB,菱形的对角线互相平分可得OB=OD,然后判断出OH是△ABD的中位线,再根据三角形的中位线平行于第三边并且等于第三边的一半可得OH=AB.解答:解:∵菱形ABCD的周长为28,∴AB=28÷4=7,OB=OD,∵H为AD边中点,∴OH是△ABD的中位线,∴OH=AB=×7=3.5.故选A.点评:本题考查了菱形的对角线互相平分的性质,三角形的中位线平行于第三边并且等于第三边的一半,熟

6、记性质与定理是解题的关键.6.(2014•襄阳,第12题3分)如图,在矩形ABCD中,点E,F分别在边AB,BC上,且AE=AB,将矩形沿直线EF折叠,点B恰好落在AD边上的点P处,连接BP交EF于点Q,对于下列结论:①EF=2BE;②PF=2PE;③FQ=4EQ;④△PBF是等边三角形.其中正确的是(  ) A.①②B.②③C.①③D.①④考点:翻折变换(折叠问题);矩形的性质分析:求出BE=2AE,根据翻折的性质可得PE=BE,再根据直角三角形30°角所对的直角边等于斜边的一半求出∠APE=30°,

7、然后求出∠AEP=60°,再根据翻折的性质求出∠BEF=60°,根据直角三角形两锐角互余求出∠EFB=30°,然后根据直角三角形30°角所对的直角边等于斜边的一半可得EF=2BE,判断出①正确;利用30°角的正切值求出PF=PE,判断出②错误;求出BE=2EQ,EF=2BE,然后求出FQ=3EQ,判断出③错误;求出∠PBF=∠PFB=60°,然后得到△PBF是等边三角形,判断出④正确.解答:解:∵AE=AB,∴BE=2AE,由翻折的性质得,PE=BE,∴∠APE=30°,∴∠AEP=90°﹣30°=60

8、°,∴∠BEF=(180°﹣∠AEP)=(180°﹣60°)=60°,∴∠EFB=90°﹣60°=30°,∴EF=2BE,故①正确;∵BE=PE,∴EF=2PE,∵EF>PF,∴PF>2PE,故②错误;由翻折可知EF⊥PB,∴∠EBQ=∠EFB=30°,∴BE=2EQ,EF=2BE,∴FQ=3EQ,故③错误;由翻折的性质,∠EFB=∠BFP=30°,∴∠BFP=30°+30°=60°,∵∠PBF=90°﹣∠EBQ=90°﹣30°=60°,∴

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。