第五讲 机械振动和机械波.doc

第五讲 机械振动和机械波.doc

ID:28840932

大小:578.50 KB

页数:16页

时间:2018-12-14

第五讲 机械振动和机械波.doc_第1页
第五讲 机械振动和机械波.doc_第2页
第五讲 机械振动和机械波.doc_第3页
第五讲 机械振动和机械波.doc_第4页
第五讲 机械振动和机械波.doc_第5页
资源描述:

《第五讲 机械振动和机械波.doc》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、第五讲机械振动和机械波§5.1简谐振动5.1.1、简谐振动的动力学特点x图5-1-1如果一个物体受到的回复力与它偏离平衡位置的位移大小成正比,方向相反。即满足:的关系,那么这个物体的运动就定义为简谐振动根据牛顿第二是律,物体的加速度,因此作简谐振动的物体,其加速度也和它偏离平衡位置的位移大小成正比,方何相反。现有一劲度系数为k的轻质弹簧,上端固定在P点,下端固定一个质量为m的物体,物体平衡时的位置记作O点。现把物体拉离O点后松手,使其上下振动,如图5-1-1所示。当物体运动到离O点距离为x处时,有式中为物体处于平衡位置时,弹簧伸长的长度,且有,因此说明物体所受回复力的大小与离开平衡位

2、置的位移x成正比。因回复力指向平衡位置O,而位移x总是背离平衡位置,所以回复力的方向与离开平衡位置的位移方向相反,竖直方向的弹簧振子也是简谐振动。注意:物体离开平衡位置的位移,并不就是弹簧伸长的长度。5.1.2、简谐振动的方程图5-1-2由于简谐振动是变加速运动,讨论起来极不方便,为此。可引入一个连续的匀速圆周运动,因为它在任一直径上的分运动为简谐振动,以平衡位置O为圆心,以振幅A为半径作圆,这圆就称为参考圆,如图5-1-2,设有一质点在参考圆上以角速度作匀速圆周运动,它在开始时与O的连线跟轴夹角为,那么在时刻t,参考圆上的质点与O的连线跟的夹角就成为,它在轴上的投影点的坐标(2)这

3、就是简谐振动方程,式中是t=0时的相位,称为初相:是t时刻的相位。参考圆上的质点的线速度为,其方向与参考圆相切,这个线速度在轴上的投影是)(3)这也就是简谐振动的速度参考圆上的质点的加速度为,其方向指向圆心,它在轴上的投影是)(4)这也就是简谐振动的加速度由公式(2)、(4)可得由牛顿第二定律简谐振动的加速度为因此有(5)简谐振动的周期T也就是参考圆上质点的运动周期,所以5.1.3、简谐振动的判据物体的受力或运动,满足下列三条件之一者,其运动即为简谐运动:①物体运动中所受回复力应满足;②物体的运动加速度满足;③物体的运动方程可以表示为。事实上,上述的三条并不是互相独立的。其中条件①是

4、基本的,由它可以导出另外两个条件②和③。§5.2弹簧振子和单摆简谐振动的教学中经常讨论的是弹簧振子和单摆,下面分别加以讨论。图5-2-15.2.1、弹簧振子弹簧在弹性范围内胡克定律成立,弹簧的弹力为一个线性回复力,因此弹簧振子的运动是简谐振动,振动周期。(1)恒力对弹簧振子的作用比较一个在光滑水平面上振动和另一个竖直悬挂振动的弹簧振子,如果m和k都相同(如图5-2-1),则它们的振动周期T是相同的,也就是说,一个振动方向上的恒力不会改变振动的周期。如果在电梯中竖直悬挂一个弹簧振子,弹簧原长,振子的质量为m=1.0kg,电梯静止时弹簧伸长=0.10m,从t=0时,开始电梯以g/2的加速

5、度加速下降,然后又以g/2加速减速下降直至停止试画出弹簧的伸长随时间t变化的图线。由于弹簧振子是相对电梯做简谐运动,而电梯是一个有加速度的非惯性系,因此要考虑弹簧振子所受到的惯性力f。在匀速运动中,惯性力是一个恒力,不会改变振子的振动周期,振动周期因为,所以因此在电梯向下加速或减速运动的过程中,振动的次数都为当电梯向下加速运动时,振子受到向上的惯性力mg/2,在此力和重力mg的共同作用下,振子的平衡位置在的地方,同样,当电梯向下减速运动时,振子的平衡位置在  图5-2-2的地方。在电梯向下加速运动期间,振子正好完成5次全振动,因此两个阶段内振子的振幅都是。弹簧的伸长随时间变化的规律如

6、图5-2-2所示,读者可以思考一下,如果电梯第二阶段的匀减速运动不是从5T时刻而是从4.5T时刻开始的,那么图线将是怎样的?(2)弹簧的组合设有几个劲度系数分别为、……的轻弹簧串联起来,组成一个新弹簧组,当这个新弹簧组在F力作用下伸长时,各弹簧的伸长为,那么总伸长图5-2-3各弹簧受的拉力也是F,所以有故根据劲度系数的定义,弹簧组的劲度系数即得如果上述几个弹簧并联在一起构成一个新的弹簧组,那么各弹簧的伸长是相同的。要使各弹簧都伸长,需要的外力根据劲度系数的定义,弹簧组的劲度系数导出了弹簧串、并联的等效劲度系数后,在解题中要灵活地应用,如图5-2-3所示的一个振动装置,两根弹簧到底是并

7、联还是串联?这里我们必须抓住弹簧串并联的本质特征:串联的本质特征是每根弹簧受力相同;并联的本质特征是每根弹簧形变相同。由此可见图5-2-3中两根弹簧是串联。当m向下偏离平衡位置时,弹簧组伸长了2,增加的弹力为m受到的合外力(弹簧和动滑轮质量都忽略)所以m的振动周期=ba图5-2-4再看如图5-2-4所示的装置,当弹簧1由平衡状态伸长时,弹簧2由平衡位置伸长了,那么,由杆的平衡条件一定有(忽略杆的质量)由于弹簧2的伸长,使弹簧1悬点下降因此物体m总的由平衡位

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。