欢迎来到天天文库
浏览记录
ID:28823391
大小:121.50 KB
页数:5页
时间:2018-12-14
《人教版九年级上册《23.2 中心对称(4)》教案》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、23.2中心对称(4)第四课时教学内容两个点关于原点对称时,它们的坐标符号相反,即点P(x,y),关于原点的对称点为P′(-x,-y)及其运用.教学目标理解P与点P′点关于原点对称时,它们的横纵坐标的关系,掌握P(x,y)关于原点的对称点为P′(-x,-y)的运用.复习轴对称、旋转,尤其是中心对称,知识迁移到关于原点对称的点的坐标的关系及其运用.重难点、关键1.重点:两个点关于原点对称时,它们的坐标符号相反,即点P(x,y)关于原点的对称点P′(-x,-y)及其运用.2.难点与关键:运用中心对称的知识导
2、出关于原点对称的点的坐标的性质及其运用它解决实际问题.教具、学具准备小黑板、三角尺教学过程一、复习引入(学生活动)请同学们完成下面三题.1.已知点A和直线L,如图,请画出点A关于L对称的点A′.2.如图,△ABC是正三角形,以点A为中心,把△ADC顺时针旋转60°,画出旋转后的图形.3.如图△ABO,绕点O旋转180°,画出旋转后的图形.老师点评:老师通过巡查,根据学生解答情况进行点评.(略)二、探索新知(学生活动)如图23-74,在直角坐标系中,已知A(-3,1)、B(-4,0)、C(0,3)、D(2
3、,2)、E(3,-3)、F(-2,-2),作出A、B、C、D、E、F点关于原点O的中心对称点,并写出它们的坐标,并回答:这些坐标与已知点的坐标有什么关系?老师点评:画法:(1)连结AO并延长AO(2)在射线AO上截取OA′=OA(3)过A作AD′⊥x轴于D′点,过A′作A′D″⊥x轴于点D″.∵△AD′O与△A′D″O全等∴AD′=A′D″,OA=OA′∴A′(3,-1)同理可得B、C、D、E、F这些点关于原点的中心对称点的坐标.(学生活动)分组讨论(每四人一组):讨论的内容:关于原点作中心对称时,①它
4、们的横坐标与横坐标绝对值什么关系?纵坐标与纵坐标的绝对值又有什么关系?②坐标与坐标之间符号又有什么特点?提问几个同学口述上面的问题.老师点评:(1)从上可知,横坐标与横坐标的绝对值相等,纵坐标与纵坐标的绝对值相等.(2)坐标符号相反,即设P(x,y)关于原点O的对称点P′(-x,-y).两个点关于原点对称时,它们的坐标符号相反,即点P(x,y)关于原点O的对称点P′(-x,-y).例1.如图,利用关于原点对称的点的坐标的特点,作出与线段AB关于原点对称的图形.分析:要作出线段AB关于原点的对称线段,只要
5、作出点A、点B关于原点的对称点A′、B′即可.解:点P(x,y)关于原点的对称点为P′(-x,-y),因此,线段AB的两个端点A(0,-1),B(3,0)关于原点的对称点分别为A′(1,0),B(-3,0).连结A′B′.则就可得到与线段AB关于原点对称的线段A′B′.(学生活动)例2.已知△ABC,A(1,2),B(-1,3),C(-2,4)利用关于原点对称的点的坐标的特点,作出△ABC关于原点对称的图形.老师点评分析:先在直角坐标系中画出A、B、C三点并连结组成△ABC,要作出△ABC关于原点O的对
6、称三角形,只需作出△ABC中的A、B、C三点关于原点的对称点,依次连结,便可得到所求作的△A′B′C′.三、巩固练习教材练习.四、应用拓展例3.如图,直线AB与x轴、y轴分别相交于A、B两点,将直线AB绕点O顺时针旋转90°得到直线A1B1.(1)在图中画出直线A1B1.(2)求出线段A1B1中点的反比例函数解析式.(3)是否存在另一条与直线AB平行的直线y=kx+b(我们发现互相平行的两条直线斜率k值相等)它与双曲线只有一个交点,若存在,求此直线的函数解析式,若不存在,请说明理由.分析:(1)只需画出
7、A、B两点绕点O顺时针旋转90°得到的点A1、B1,连结A1B1.(2)先求出A1B1中点的坐标,设反比例函数解析式为y=代入求k.(3)要回答是否存在,如果你判断存在,只需找出即可;如果不存在,才加予说明.这一条直线是存在的,因此A1B1与双曲线是相切的,只要我们通过A1B1的线段作A1、B1关于原点的对称点A2、B2,连结A2B2的直线就是我们所求的直线.解:(1)分别作出A、B两点绕点O顺时针旋转90°得到的点A1(1,0),B1(2,0),连结A1B1,那么直线A1B1就是所求的.(2)∵A1B
8、1的中点坐标是(1,)设所求的反比例函数为y=则=,k=∴所求的反比例函数解析式为y=(3)存在.∵设A1B1:y=k′x+b′过点A1(0,1),B1(2,0)∴∴∴y=-x+1把线段A1B1作出与它关于原点对称的图形就是我们所求的直线.根据点P(x,y)关于原点的对称点P′(-x,-y)得:A1(0,1),B1(2,0)关于原点的对称点分别为A2(0,-1),B2(-2,0)∵A2B2:y=kx+b∴∴∴A2B2:y=-x-1下面证明y
此文档下载收益归作者所有