几何图形(四)

几何图形(四)

ID:28798971

大小:874.00 KB

页数:9页

时间:2018-12-14

几何图形(四)_第1页
几何图形(四)_第2页
几何图形(四)_第3页
几何图形(四)_第4页
几何图形(四)_第5页
资源描述:

《几何图形(四)》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、年级六年级学科奥数版本通用版课程标题几何图形(四)编稿老师宋玲玲一校林卉二校黄楠审核张舒求解“直线型面积”的问题,前提是熟练掌握基本图形面积的求解方法,关键是仔细观察问题中的数学信息,分析各种信息中的联系,寻找解决问题的突破口,利用“等积变形、三角形、四边形中的各种比例关系”灵活地进行分析、推理、进而解决问题。燕尾定理:如图所示:︰=︰=BE︰EC;︰=︰=AF︰FC;︰=︰=AD︰DB。上述定理给出了一个新的转化面积比与线段比的手段,因为和的形状很像燕子的尾巴,所以这个定理被称为燕尾定理。该定理在许多几何题目中都有着广泛的运用。例1如图所示,△AB

2、C的面积是210平方厘米,D是BC的中点,AD是AE的3倍,EF是FB的3倍,那么△AEF的面积是多少平方厘米?第9页版权所有不得复制分析与解:因为△ABD、△ABC等高,所以△ABD、△ABC面积的比等于底的比,由此我们得到,所以(平方厘米)。同理,(平方厘米),(平方厘米)。所以△AEF的面积是26.25平方厘米。例2工人王师傅在一块三角形的草坪上用剪草机剪草坪时,看到了小灵通,便热情地问道:“小灵通,听说你很会动脑筋,我也想问问你,这块草坪我把它分为东、西、南、北4个部分(如图所示),修剪西部、东部、南部各需10分钟、16分钟、20分钟,请你想

3、一想修剪北部需要多少分钟?分析与解:如下图所示,将图中的各点标上字母后,连接AF,将“北部”分成a、b两个小三角形,修剪各部分草坪所需的时间与其所占的面积成正比,再根据燕尾定理我们可以得到这样的关系式:,整理得到,解得。所以修剪北部草坪需要20+24=44(分钟)。第9页版权所有不得复制例3在△ABC中,CD=BD,DE=EA。若△ABC的面积是35平方厘米,那么阴影部分的面积是多少平方厘米?分析与解:如下图所示,连接FD。由DE=EA,可知,,所以=。在△BCF中,CD=BD,所以2,则,。因此阴影部分的面积占△ABC面积的,其面积为35=14(平

4、方厘米)。例4如图甲,四边形是矩形,、分别是、上的点,且,,与相交于,若矩形的面积为,则与的面积之和为。甲乙丙分析与解:解法一:如图乙,过作的平行线交于,则,所以,,即,所以。第9页版权所有不得复制且,故,则。所以两三角形面积之和为。解法二:如上图丙,连接、。根据燕尾定理,,,而,所以×,,则,,所以两个三角形的面积之和为15。例5如图所示,正方形ABCD的面积是16平方厘米,M为AD边上的中点,那么阴影部分的面积是多少平方厘米?分析与解:为方便说明,我们把图中4个三角形分别用数字表示,如图所示:根据题中条件可知,正方形的边长为4,那么=4×4×=8

5、;因为和等高,所以︰=AM︰BC=1︰2,由此我们知道如果以AC为底,与的高之比也是1︰2,即④和①两个三角形以CG为公共底,高的比也是1︰2,那么︰=1︰2,说明=×=(平方厘米)。观察图形可知,=(等底等高),也就是说=。所以,=+=2×=(平方厘米)。第9页版权所有不得复制例6如图所示,梯形内空白的部分是两个三角形,它们的面积分别为20平方厘米与24平方厘米,已知梯形的上底长是下底长的,那么余下阴影部分的面积是多少平方厘米?分析与解:不妨设上底长为2k,那么下底长为3k。则上面空白部分的三角形的高为20×2÷2k=(厘米),下面空白部分的三角形

6、的高为24×2÷3k=(厘米),则梯形的高为+=(厘米)。所以梯形的面积为(2k+3k)×÷2=90(平方厘米),余下阴影部分的面积为90-20-24=46(平方厘米)。例7如图,已知,,三角形的面积是30,求阴影部分面积。分析与解:连接,因为,,三角形的面积是30,所以,。根据燕尾定理,,,所以,。所以阴影部分面积是。第9页版权所有不得复制例8两个正方形的边长分别为8㎝、12㎝,那么图中阴影部分的面积是多少?分析与解:为了解题叙述方便,将图中的各顶点用字母表示,如下图所示,连接AD。在梯形ABCD中,上、下底之比是12︰(12+8)=3︰5,则对角

7、线的交点E将梯形分成的4个三角形的面积之比为,空白部分的面积占梯形ABCD面积的。又因为(AB+CD)×BC÷2=(平方厘米),所以(平方厘米),+-(平方厘米)。(答题时间:30分钟)1.如图,在△ABC中,CD=BD,DE=EA。若△ABC的面积是35平方厘米,那么阴影部分的面积是多少平方厘米?2.一个大长方形被一条线段分成两个小长方形,这两个小长方形的宽的比为1∶3,若阴影三角形的面积为2平方厘米,则大长方形的面积为多少平方厘米?3.BD、CF将长方形ABCD分成4块,△DFE的面积是4平方厘米,△CDE的面积是6平方厘米。问:四边形ABEF的

8、面积是多少平方厘米?第9页版权所有不得复制4.如图所示,正方形ABCD的边长是4厘米,CG=3厘米。求它的宽

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。