(数学)高考数学创新题和几个命题方向

(数学)高考数学创新题和几个命题方向

ID:28789685

大小:876.00 KB

页数:12页

时间:2018-12-14

(数学)高考数学创新题和几个命题方向_第1页
(数学)高考数学创新题和几个命题方向_第2页
(数学)高考数学创新题和几个命题方向_第3页
(数学)高考数学创新题和几个命题方向_第4页
(数学)高考数学创新题和几个命题方向_第5页
资源描述:

《(数学)高考数学创新题和几个命题方向》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、高考数学创新题的几个命题方向在近几年各省市的高考试卷中都有几个创新题,无论是试题形式的设计,考试内容的选择,考查思维的深度,问题情景的创设等,都给人耳目一新之感,呈现了“重点突出,焦点集中,亮点璀璨”的特色,准确阐释了高考命题的思想和原则,具体来说,创新题有哪些命题方向呢?下面我们通过高考题或模拟题做个归类分析.创新题命题方向之一:定义“新概念”或“新运算”型新信息题成为高考试题改革的一个新的亮点,通过给出一个新概念,或约定一种新运算,或给出几个新的模型等创设一种全新的问题情境,主要考查学生独立提取信息、加工信息的能力,要求考生在阅读理解的基础上

2、,紧扣条件,抓住关键的信息,实现信息的转化,达到灵活解题的目的,【例1】为提高信息在传输中的抗干扰能力,通常在原信息中按一定规则加入相关数据组成传输信息.设定原信息为传输信息为其中运算规则为:例如原信息为111,则传输信息为01111.传输信息在传输过程中受到干扰可能导致接收信息出错,则下列接收信息一定有误的是()A.11010B.01100C.10111D.00011【解析】按题中新定义的新运算法则将给出数据信息进行转化.我们知道,传输信息之间的三个数是原信息,C选项原信息为011,则所以应该接收信息10110.故选C.【点评】在给出新定义或新

3、运算问题中要摒弃原有的运算法则,以避免造成运算的紊乱.面对这类问题只需按给定的法则进行运算即可,此类问题虽然给出的条件信息比较多,而其实质却很简单,只需用简单的数学知识即可解决.【例2】已知函数设表示中的较大者,表示中的较小值),记得最小值为得最大值为则()A.B.C.D.【解析】顶点坐标为顶点坐标并且每个函数顶点都在另一个函数的图像上,如下图所示,分别为两个二次函数顶点的纵坐标,所以选C.【点评】深刻理解新概念是解题的关键,画出图像为我资料们的理解起到了举足轻重的作用,另外找到顶点的特征为解题找到了突破口,还要注意A,B并非在同一个自变量取得.

4、针对性练习:设S,T是R的两个非空子集,如果存在一个从S到T的函数满足:;对任意当时,恒有那么称这两个集合“保序同构”.以下集合对不是“保序同构”的是()A.B.C.D.【解析】根据题意可知,令则A选项正确;令则B选项正确;令则C选项正确.故答案为D.创新题命题方向之二:类比型给出几个在结构上类似的等式或不等式,通过应用其相似性把信息从一个对象转移到另一个对象获得对有关问题的结论或在其性质上有相同或相似的一种推理形式,实现信息的转化,达到求解的目的,类比是创造性的“模仿”,联想是“由此及彼”的思维跳跃,编制题目引导考生将所求的问题与熟知的信息相类

5、比,进行多方位的联想,将式子结构、运算法则、解题方法,问题的结论等引申推广或迁移,可由已知探索未知,由旧知探索新知,这既有利于培养同学们的创新思维,又有利于提高同学们举一反三、触类旁通的应变能力.【例3】先阅读下列不等式的证法,再解决后面的问题:已知求证证明:构造函数因为对一切恒所以从而得(1)若请写出上述结论的推广式;(2)参考上述解法,对你推广的结论加以证明.资料【解析】这是类比问题的推广,所以只需依照条件中给出的结论的结构特征及证明方法即可得到推广结论及其证明.(1)若求证:.(2)证明:构造函数因为对一切都有所以从而证得:【点评】对于某些

6、不等式证明题,我们若能根据其条件和结论,结合判别式的结构特征,通过构造二项平方和函数:由得就可以使一些用一般方法处理较繁的问题,获得简捷、明快的证明,构造法解题的最大特点是调整思维视角,在更广阔的背景下考察问题中所涉及的代数、几何元素及其相互关系.所以应用构造法解题的关键有:(1)要有明确的方向,即为何构造;(2)要弄清条件的本质特点,以便进行逻辑组合.【例4】当时,有如下表达式:两边同时积分得:从而得到如下等式:请根据以上材料所蕴含的数学思想方法,计算:_____.【解析】材料中是从一个原有的等式,对其等号两边同时积分得到一个新的等式,因此,要

7、解决题中所给的问题,要先找到一个等式,使其等号两边积分后与题中所给的式子尽可能的相关,在这个过程中,观察和联想很重要.从题中观察到,____和等号左边的式子相比,只多了个系数再从式子的整体结构和各项中,联想到二项展开式资料对其等号两边同时积分,即得:由两边同时积分得:从而得到如下等式:【点评】问题的材料本身就很有创新,我们要根据材料提供的方法应用到新问题中,这对我们是个考验,怎么运用呢?联想到我们熟知的等式:是解题的关键.针对性练习:在数学解题中,常会碰到形如“”的结构,这时可类比正切的和角公式,如:设是非零实数,且满足则()A.B.C.D.【解

8、析】首先条件等式化成形如“”的结构,然后利用两角和的正切公式来解题,将条件左式变形,得联想两角和的正切公式,设则有则解得于是答案选D.创

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。