欢迎来到天天文库
浏览记录
ID:28745199
大小:34.50 KB
页数:4页
时间:2018-12-13
《led显示屏中所用地蓝色与绿色芯片解析汇报汇报》由会员上传分享,免费在线阅读,更多相关内容在工程资料-天天文库。
1、实用标准文案LED显示屏中所用的蓝色与绿色芯片解析转载:中国LED显示屏网www.ledadw.comLED的工作原理是在正向导通的情况下,注入二极管P/N节区的电子和空穴相遇复合,将电势能转换为光能。所发出光子的波长(也就是光的颜色)是由半导体的能带宽度决定的,通俗地讲,半导体能带宽度越宽,发出的光子能量越大,对应的波长越短,简单的换算关系是:(nm)。当前蓝、绿光LED器件的材料基础是III族氮化物半导体,也就是GaN为主,InN、AlN为辅的四元AlGaInN合金体系, 目前,绝大部分蓝、绿光LED
2、芯片的量子阱发光层材料是由InxGa1-xN合金和GaN组成的,由于InxGa1-xN合金的能带宽度随着InN的比例x变化,可以在3.4eV(对应GaN的能带宽度)和0.7eV(对应InN的能带宽度)调整,所以理论上这个材料体系可以覆盖整个可见光光谱区域。但是,目前的材料制备技术是基于GaN晶体的外延层生长技术,只能生长含InN组份较低的合金材料。InxGa1-xN合金在InN的组份x>15%以后,晶体质量急剧下降。实际上,目前工业界的技术水平通常做到蓝光芯片的电光转换效率大约是绿光的2倍,就是因为前者的I
3、nN组份远小于后者,绿光器件中InN的组份估计已经在30%以上(InGaN合金材料精确组份的测定目前在学术界还是一个疑难科学问题)。也就是说,目前的技术还很难通过继续增加InN的组份,使得InGaN合金器件能高效率地发出红光。但值得庆幸的是,早在上个世纪90年代,III族磷化物体系(也通常表述为四元体系,AlGaInP)已经成为红、黄光LED器件成熟的材料基础。这两个材料体系的基本物理特征以及其所含元素在周期表中的位置。 III族氮化物半导体材料目前工业化制备是通过金属有机物化学气相沉积(metal-or
4、ganicchemicalvapordeposition,MOCVD)来实现的。该技术的基本原理是通过在密闭化学反应腔中引入高纯度的金属有机源(MO源)和氨气(NH3),使其在加热的衬底基板(一般选择蓝宝石做衬底)上生长出高质量的晶体。基本化学反应式是:Ga(CH3)3+NH3→GaN+CH4.通常GaN晶体是六方状的纤锌矿结构,基本的物理特性如表2所示。需要特别指出的有两点:(1)GaN的能带宽度在常温300K时,等于3.39eV,是非常难得的宽禁带半导体材料,如果发光,对应的光子波长应该是,属于紫外光;
5、(2)GaN的p-型掺杂非常困难,目前可以达到的载流子浓度比n-型掺杂低将近两个数量级,电阻很大。这个特性对其器件的设计提出了特殊的要求,这一点在随后介绍LED器件结构时将提到。GaN与它同族的AlN和InN的物理属性差异非常显着,表3给出了具体的比对。在晶体生长过程中,GaN晶体的取向和蓝宝石衬底的晶面选择有着密切关系。当前,工业化生长GaN晶体一般都取c-面的蓝宝石作为衬底基板,GaN晶体生长与衬底晶体取向会保持一个固定的配位关系(这也就是“外延”的意思)。GaN外延片表面是晶体的六方密排c-面,晶体的
6、生长是沿着c-轴逐层原子堆积而成的,也就是c-轴方向成长。 精彩文档实用标准文案 GaN基LED外延片的基本结构是在蓝宝石衬底上依次生长:(1)GaN结晶层;(2)n-型GaN(实际生产中一般先长一层非故意掺杂的n型GaN);(3)InGaN/GaN多量子阱发光层;(4)p-型GaN.为了获得高性能的器件,整个外延生长过程的各项参数都要得到优化并且精确控制,其中对发光效率影响最大的结构是InGaN/GaN多量子阱发光层。p和n型材料的掺杂元素通常为Mg和Si,Mg通过替代GaN中的Ga原子(Mg比Ga少一个
7、外围电子),形成一个空穴载流子,Si通过替代Ga原子,形成一个电子载流子(Si比Ga多一个外围电子)。一般整个器件的外延层厚度范围在4~8μm,平均生长速度大约1μm/小时,因此完成一次器件的生长大约需要8小时。完成MOCVD外延生长后,需要通过一系列的光罩图形处理和物理刻蚀或沉积工艺制备GaN基LED芯片。普通蓝、绿光LED芯片的基本结构,需要在外延片上依次做如下器件加工:(1)刻蚀局部区域露出n-型GaN导电层;(2)蒸镀透明导电薄膜NiAu或ITO;(3)蒸镀焊线电极,包括p电极和n电极;(4)蒸镀钝
8、化保护层。芯片加工过程需要严格管理质量,避免出现类似焊盘机械黏附力不足、表面异物污染等容易导致器件在封装使用过程失效的问题。此外,芯片随后还需要做衬底减薄、物理切割分离、测试、分选,最后获得光电参数一致的芯片成品。由于GaN基LED芯片衬底蓝宝石是绝缘体,芯片通过上表面的两个+/-电极与金属焊线连接来导电。相比而言,目前普通GaAs衬底的红光芯片还是通过导电胶使衬底与支架之间形成导电通道,工艺控制导电胶的物理黏结
此文档下载收益归作者所有