欢迎来到天天文库
浏览记录
ID:28731606
大小:365.00 KB
页数:8页
时间:2018-12-13
《高中数学必修1教案3.2.1 几类不同增长的函数模型》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、精品3.2.1几类不同增长的函数模型一、三维目标(一)知识与技能结合实例体会直线上升、指数爆炸、对数增长等不同增长的函数模型意义,理解它们的增长差异性.(二)过程与方法能够借助信息技术,利用函数图象及数据表格,对几种常见增长类型的函数的增长状况进行比较,初步体会它们的增长差异性;收集一些社会生活中普遍使用的函数模型(指数函数、对数函数、幂函数等),了解函数模型的广泛应用.(三)情感、态度与价值观体验函数是描述宏观世界变化规律的基本数学模型,体验指数函数、对数函数等函数与现实世界的密切联系及其在刻画现实问题中的作用.培养学生学数学,用数学,完善数学的正确数
2、学意识.二、教学重点将实际问题转化为函数模型,一次函数、指数函数、对数函数、幂函数模型的增长差异,结合实例体会直线上升、指数爆炸、对数增长等不同函数类型增长的含义.三、教学难点怎样选择数学模型分析解决实际问题.四、教具准备多媒体课件、与教材内容相关的资料导入新课思路1情景导入国际象棋起源于古代印度.相传国王要奖赏国际象棋的发明者,问他要什么.发明者说:“请在棋盘的第一个格子里放上1颗麦粒,第2个格子里放上2颗麦粒,第3个格子里放上4颗麦粒,依次类推,每个格子里的麦粒数都是前一个格子里放的麦粒数的2倍,直到第64个格子.请给我足够的麦粒以实现上述要求.”国
3、王觉得这个要求不高,就欣然同意了.假定千粒麦子的质量为40g,据查,目前世界年度小麦产量为6亿吨,但不能满足发明者要求,这就是指数增长.本节我们讨论指数函数、对数函数、二次函数的增长差异.思路2直接导入我们知道,对数函数y=logax(a>1),指数函数y=ax(a>1)与幂函数y=xn(n>0)在区间(0,+∞)上都是增函数.但这三类函数的增长是有差异的.本节我们讨论指数函数、对数函数、二次函数的增长差异.推进新课新知探究提出问题①在区间(0,+∞)上判断y=log2x,y=2x,y=x2的单调性.②列表并在同一坐标系中画出三个函数的图象.③结合函数的
4、图象找出其交点坐标.④请在图象上分别标出使不等式log2x<2x5、1.5851.766图3-2-1-12③从图象看出y=log2x的图象与另外两函数的图象没有交点,且总在另外两函数的图象的下方,y=2x的图象与y=x2的图象有两个交点(2,4)和(4,16).④不等式log2x<2x6、),这表明2x与x2在自变量不同的区间内有不同的大小关系,有时2x1)和幂函数y=xn(n7、>0),通过探索可以发现,在区间(0,+∞)上,无论n比a大多少,尽管在x的一定变化范围内,ax会小于xn,但由于ax的增长快于xn的增长,因此总存在一个x0,当x>x0时,就会有ax>xn.同样地,对于对数函数y=logax(a>1)和幂函数y=xn(n>0),在区间(0,+∞)上,随着x的增大,logax增长得越来越慢,图象就像是渐渐地与x轴平行一样.尽管在x的一定变化范围内,logax可能会大于xn,但由于logax的增长慢于xn的增长,因此总存在一个x0,当x>x0时,就会有logax1),指数函8、数y=ax(a>1)与幂函数y=xn(n>0)在区间(0,+∞)上都是增函数,但
5、1.5851.766图3-2-1-12③从图象看出y=log2x的图象与另外两函数的图象没有交点,且总在另外两函数的图象的下方,y=2x的图象与y=x2的图象有两个交点(2,4)和(4,16).④不等式log2x<2x6、),这表明2x与x2在自变量不同的区间内有不同的大小关系,有时2x1)和幂函数y=xn(n7、>0),通过探索可以发现,在区间(0,+∞)上,无论n比a大多少,尽管在x的一定变化范围内,ax会小于xn,但由于ax的增长快于xn的增长,因此总存在一个x0,当x>x0时,就会有ax>xn.同样地,对于对数函数y=logax(a>1)和幂函数y=xn(n>0),在区间(0,+∞)上,随着x的增大,logax增长得越来越慢,图象就像是渐渐地与x轴平行一样.尽管在x的一定变化范围内,logax可能会大于xn,但由于logax的增长慢于xn的增长,因此总存在一个x0,当x>x0时,就会有logax1),指数函8、数y=ax(a>1)与幂函数y=xn(n>0)在区间(0,+∞)上都是增函数,但
6、),这表明2x与x2在自变量不同的区间内有不同的大小关系,有时2x1)和幂函数y=xn(n
7、>0),通过探索可以发现,在区间(0,+∞)上,无论n比a大多少,尽管在x的一定变化范围内,ax会小于xn,但由于ax的增长快于xn的增长,因此总存在一个x0,当x>x0时,就会有ax>xn.同样地,对于对数函数y=logax(a>1)和幂函数y=xn(n>0),在区间(0,+∞)上,随着x的增大,logax增长得越来越慢,图象就像是渐渐地与x轴平行一样.尽管在x的一定变化范围内,logax可能会大于xn,但由于logax的增长慢于xn的增长,因此总存在一个x0,当x>x0时,就会有logax1),指数函
8、数y=ax(a>1)与幂函数y=xn(n>0)在区间(0,+∞)上都是增函数,但
此文档下载收益归作者所有