奥数:四年级奥数.数论. 整除性质的应用(b级).学生版

奥数:四年级奥数.数论. 整除性质的应用(b级).学生版

ID:28698723

大小:254.96 KB

页数:10页

时间:2018-12-13

奥数:四年级奥数.数论. 整除性质的应用(b级).学生版_第1页
奥数:四年级奥数.数论. 整除性质的应用(b级).学生版_第2页
奥数:四年级奥数.数论. 整除性质的应用(b级).学生版_第3页
奥数:四年级奥数.数论. 整除性质的应用(b级).学生版_第4页
奥数:四年级奥数.数论. 整除性质的应用(b级).学生版_第5页
资源描述:

《奥数:四年级奥数.数论. 整除性质的应用(b级).学生版》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、整除性质的应用知识框架一、常见数字的整除判定方法:(1)一个数的末位能被2或5整除,这个数就能被2或5整除;(2)一个数的末两位能被4或25整除,这个数就能被4或25整除;(3)一个数的末三位能被8或125整除,这个数就能被8或125整除;(4)一各位数数字和能被3整除,这个数就能比9整除;(5)一个数各位数数字和能被9整除,这个数就能被9整除;(6)如果一个整数的奇数位上的数字之和与偶数位上的数字之和的差能被11整除,那么这个数能被11整除.(7)1001特征(家有三子7、11、13)一个数除以7的余数,其末三位与前面隔开,等于末三位与前面隔出数的差除以7的余数;一个数

2、除以11的余数,其末三位与前面隔开,等于末三位与前面隔出数的差除以11的余数;或者,其奇数位数字之和(从个位往高位数,个位为第1位,即为奇数位)减去偶数位数字之和所得的差除以11的余数;一个数除以13的余数,其末三位与前面隔开,等于末三位与前面隔出数的差(大减小)能被13整除;【备注】(以上规律仅在十进制数中成立.)二、整除性质性质1如果数a和数b都能被数c整除,那么它们的和或差也能被c整除.即如果c︱a,c︱b,那么c︱(a±b).性质2如果数a能被数b整除,b又能被数c整除,那么a也能被c整除.即如果b∣a,c∣b,那么c∣a.用同样的方法,我们还可以得出:性质3如果

3、数a能被数b与数c的积整除,那么a也能被b或c整除.即如果bc∣a,那么b∣a,c∣a.性质4如果数a能被数b整除,也能被数c整除,且数b和数c互质,那么a一定能被b与c的乘积整除.即如果b∣a,c∣a,且(b,c)=1,那么bc∣a.例如:如果3∣12,4∣12,且(3,4)=1,那么(3×4)∣12.性质5如果数a能被数b整除,那么am也能被bm整除.如果b|a,那么bm|am(m为非0整数);性质6如果数a能被数b整除,且数c能被数d整除,那么bd也能被ac整除.如果b|a,且d|c,那么ac|bd;例题精讲【例1】是2008的倍数._________【巩固】如果六

4、位数能被105整除,那么它的最后两位数是多少?【例2】六位数2008能被49整除,中的数是多少?【巩固】在六位数1111中的两个方框内各填入一个数字,使此数能被17和19整除,那么方框中的两位数是多少?【例1】用数字6,7,8各两个,组成一个六位数,使它能被168整除。这个六位数是多少?【巩固】甲、乙两个三位数的乘积是一个五位数,这个五位数的后四位为1031.如果甲数的数字和为10,乙数的数字和为8,那么甲乙两数之和是_________.【例2】某个七位数1993□□□能够同时被2,3,4,5,6,7,8,9整除,那么它的最后三位数字依次是多少?【巩固】在523后面写出三

5、个数字,使所得的六位数被7、8、9整除.那么这三个数字的和是多少?【例3】在六位数中,不同的字母表示不同的数字,且满足,,,,,依次能被2,3,5,7,11,13整除.则的最小值是;已知当取得最大值时,,那么的最大值是________.【巩固】有一个九位数的各位数字都不相同且全都不为0,并且二位数可被2整除,三位数可被3整除,四位数可被4整除,……依此类推,九位数可被9整除.请问这个九位数是多少?【例1】把若干个自然数1、2、3、……连乘到一起,如果已知这个乘积的最末十三位恰好都是零,那么最后出现的自然数最小应该是多少?最大是多少?【巩固】把若干个自然数1、2、3、……连

6、乘到一起,如果已知这个乘积的最末53位恰好都是零,那么最后出现的自然数最小应该是多少?最大是多少?【例2】多位数,能被11整除,最小值为多少?【巩固】能被11整除,那么,的最小值为多少?【例1】某个自然数既能写成9个连续自然数的和,还同时可以写成10个连续自然数的和,也能写成11个连续自然数的和,那么这样的自然数最小可以是几?【巩固】有些数既能表示成3个连续自然数的和,又能表示成4个连续自然数的和;还能表示成5个连续自然数的和.请你找出700至1000之间,所有满足上述要求的数,并简述理由.【例2】在小于5000的自然数中,能被11整除,并且数字和为13的数,共有多少个.

7、【巩固】用1,9,8,8这四个数字能排成几个被11除余8的四位数?【例1】在1至2008这2008个自然数中,恰好是3、5、7中两个数的倍数的数共有多少个?【巩固】在1、2、3、4……2007这2007个数中有多少个自然数a能使2008+a能被2007-a整除。课堂检测【随练1】是个四位数字。数学老师说:“我在这个中先后填入3个数字,所得到的3个四位数,依次可被9、11、6整除。”问:数学老师先后填入的3个数字的和是多少?【随练2】将数字4,5,6,7,8,9各使用一次,组成一个被667整除的6位数,那么,这个6位数除以667

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。