2.4.1正态分布.doc

2.4.1正态分布.doc

ID:28652961

大小:621.00 KB

页数:19页

时间:2018-12-12

2.4.1正态分布.doc_第1页
2.4.1正态分布.doc_第2页
2.4.1正态分布.doc_第3页
2.4.1正态分布.doc_第4页
2.4.1正态分布.doc_第5页
资源描述:

《2.4.1正态分布.doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、亲爱的同学:经过一番刻苦学习,大家一定跃跃欲试地展示了一下自己的身手吧!那今天就来小试牛刀吧!注意哦:在答卷的过程中一要认真仔细哦!不交头接耳,不东张西望!不紧张!养成良好的答题习惯也要取得好成绩的关键!祝取得好成绩!一次比一次有进步!2.4.1正态分布【教学目标】1.了解正态分布的意义,掌握正态分布曲线的主要性质及正态分布的简单应用。2.了解假设检验的基本思想,会用质量控制图对产品的质量进行检测,对生产过程进行控制。【教学重难点】教学重点:1.正态分布曲线的特点;2.正态分布曲线所表示的意义.教学难点:1.在实际中

2、什么样的随机变量服从正态分布;2.正态分布曲线所表示的意义.【教学过程】一、设置情境,引入新课这是一块高尔顿板,让一个小球从高尔顿板上方的通道口落下,小球在下落的过程中与层层小木块碰撞,最后掉入高尔顿板下方的某一球槽内。问题1.在投放小球之前,你能知道这个小球落在哪个球槽中吗?问题2.重复进行高尔顿板试验,随着试验次数的增加,掉入每个球槽中小球的个数代表什么?19问题3.为了更好的研究小球分布情况,对各个球槽进行编号,以球槽的编号为横坐标,以小球落入各个球槽的频率值为纵坐标,你能画出它的频率分布直方图吗?问题4.随着

3、试验次数的增加,这个频率直方图的形状会发生什么样的变化?二、合作探究,得出概念随着试验次数的增加,这个频率直方图的形状会越来越像一条钟形曲线.这条曲线可以近似下列函数的图像:其中实数为参数,我们称的图像为正态分布密度曲线,简称正态曲线。问题5.如果在高尔顿板的底部建立一个水平坐标轴,其刻度单位为球槽的宽度,X表示一个随机变量,X落在区间的概率为什么?其几何意义是什么?一般地,如果对于任何实数,随机变量X满足则称X的分布为正态分布,记作,如果随机变量X服从正态分布,则记为。19问题6.在现实生活中,什么样的分布服从或近

4、似服从正态分布?问题7.结合的解析式及概率的性质,你能说说正态分布曲线的特点吗?可以发现,正态曲线有以下特点:(1)曲线位于x轴上方,与x轴不相交;(2)曲线是单峰的,它关于直线对称;(3)曲线在处达到峰值;(4)曲线与x轴之间的面积为1;(5)当一定时,曲线随着德变化而沿x轴平移;(6)当一定时,曲线的形状由确定,越小,曲线越“瘦高”,表示总体的分布越集中;越大,曲线越“矮胖”,表示总体的分布越分散。若,则对于任何实数概率19对于固定的而言,给面积随着的减少。这说明越小,X落在区间的概率越小,即X集中在周围概率越大

5、.特别有可以看到,正态总体几乎总取值于区间之内。而在此区间以外取值的概率只有,通常认为这种情况在一次试验中几乎不可能发生。在实际应用中,通常认为服从于正态分布的随机变量X只取之间的值,简称之为原则三、典型例题例1.在某次数学考试中,考生的成绩服从一个正态分布,即。(1)试求考试成绩位于区间(70,110)上的概率是多少?(2)若这次考试共有2000名考生,试估计考试成绩在(80,100)间的考生大约有多少人?解析:正态分布已经确定,则总体的期望和标准差就可以求出,这样就可以根据正态分布在三个常见的区间上取值的概率进行

6、求解.解:因为,所以=90,=10。(1)由于正态变量在区间内取值的概率是0.9544,而该正态分布中,,于是考试成绩位于区间(70,110)内的概率就是0.9544。(2)由=90,=10,得。由于正态变量在区间内取值的概率是0.6826,所以考试成绩19位于区间(80,100)内的概率就是0..6826.一共有2000名考生,所以考试成绩在(80,100)间的考生大约有20000.68261365人。点评:解答这类问题的关键是熟记正态变量的取值位于区间,,上的概率值,同时又要根据已知的正态分布确定所给区间属于上述

7、三个区间中的哪一个.变式训练.已知一次考试共有60名同学参加,考生的成绩据此估计,大约应有57人的分数在下列哪个区间内?()答案C三、反馈测评1.给出下列三个正态总体的函数表达式,请找出其均值μ和标准差σ(1)(2)(3)2.若随机变量,则在区间上的取值的概率等于在下列哪个区间上取值的概率()3.若随机变量服从正态分布,则在区间上取值的概率等于()A.0.6826B.0.9544C.0.9974D.0.31744.若一个正态总体落在区间里的概率是0.5,那么相应的正态曲线f(x)在x=时,达到最高点。答案:1.(1)

8、0,1;(2)1,2;(3)-1,0.52.C3.C4.0.2四、课堂小结1.了解正态曲线、正态分布的概念,知道正态曲线的解析式及曲线的特点。2.了解假设检验的基本思想并体会它的应用。五、作业课本P86习题2.41、2题19192.4.1正态分布课前预习学案一、预习目标1.通过实际问题,借助直观,认识正态分布曲线的特点及曲线所表示的意义。2.通

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。