二次函数知识点总结相关典型题目

二次函数知识点总结相关典型题目

ID:28599725

大小:1.06 MB

页数:11页

时间:2018-12-11

二次函数知识点总结相关典型题目_第1页
二次函数知识点总结相关典型题目_第2页
二次函数知识点总结相关典型题目_第3页
二次函数知识点总结相关典型题目_第4页
二次函数知识点总结相关典型题目_第5页
资源描述:

《二次函数知识点总结相关典型题目》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库

1、.二次函数知识点总结及相关典型题目第一部分二次函数基础知识²相关概念及定义Ø二次函数的概念:一般地,形如(是常数,)的函数,叫做二次函数。这里需要强调:和一元二次方程类似,二次项系数,而可以为零.二次函数的定义域是全体实数.Ø二次函数的结构特征:⑴等号左边是函数,右边是关于自变量的二次式,的最高次数是2.⑵是常数,是二次项系数,是一次项系数,是常数项.²二次函数各种形式之间的变换Ø二次函数用配方法可化成:的形式,其中.Ø二次函数由特殊到一般,可分为以下几种形式:①;②;③;④;⑤.²二次函数解析式的表示方法Ø一般式:(,,为常数,);Ø顶点式:(,,为常数,);Ø两根式:(,,是抛物线与

2、轴两交点的横坐标).Ø注意:任何二次函数的解析式都可以化成一般式或顶点式,但并非所有的二次函数都可以写成交点式,只有抛物线与轴有交点,即时,抛物线的解析式才可以用交点式表示.二次函数解析式的这三种形式可以互化.Ø二次函数的性质的符号开口方向顶点坐标对称轴性质向上轴时,随的增大而增大;时,随的增大而减小;时,有最小值.向下轴时,随的增大增大而减小;时,随的增大而增大;时,有最大值.²二次函数的性质的符号开口方向顶点坐标对称轴性质性质向上轴时,随的增大而增大;时,随的增大而减小;时,有最小值.向下轴时,随的增大而减小;时,随的增大而增大;时,有最大值.......²二次函数的性质:的符号开口

3、方向顶点坐标对称轴性质向上X=h时,随的增大而增大;时,随的增大而减小;时,有最小值.向下X=h时,随的增大而减小;时,随的增大而增大;时,有最大值.²二次函数的性质的符号开口方向顶点坐标对称轴性质向上X=h时,随的增大而增大;时,随的增大而减小;时,有最小值.向下X=h时,随的增大而减小;时,随的增大而增大;时,有最大值.²抛物线的三要素:开口方向、对称轴、顶点.Ø的符号决定抛物线的开口方向:当时,开口向上;当时,开口向下;相等,抛物线的开口大小、形状相同.Ø对称轴:平行于轴(或重合)的直线记作.特别地,轴记作直线.Ø顶点坐标坐标:Ø顶点决定抛物线的位置.几个不同的二次函数,如果二次项

4、系数相同,那么抛物线的开口方向、开口大小完全相同,只是顶点的位置不同.²抛物线中,与函数图像的关系Ø二次项系数......二次函数中,作为二次项系数,显然.⑴当时,抛物线开口向上,越大,开口越小,反之的值越小,开口越大;⑵当时,抛物线开口向下,越小,开口越小,反之的值越大,开口越大.总结起来,决定了抛物线开口的大小和方向,的正负决定开口方向,的大小决定开口的大小.Ø一次项系数在二次项系数确定的前提下,决定了抛物线的对称轴.⑴在的前提下,当时,,即抛物线的对称轴在轴左侧;当时,,即抛物线的对称轴就是轴;当时,,即抛物线对称轴在轴的右侧.⑵在的前提下,结论刚好与上述相反,即当时,,即抛物线的

5、对称轴在轴右侧;当时,,即抛物线的对称轴就是轴;当时,,即抛物线对称轴在轴的左侧.总结起来,在确定的前提下,决定了抛物线对称轴的位置.总结:Ø常数项⑴当时,抛物线与轴的交点在轴上方,即抛物线与轴交点的纵坐标为正;⑵当时,抛物线与轴的交点为坐标原点,即抛物线与轴交点的纵坐标为;⑶当时,抛物线与轴的交点在轴下方,即抛物线与轴交点的纵坐标为负.总结起来,决定了抛物线与轴交点的位置.总之,只要都确定,那么这条抛物线就是唯一确定的.²求抛物线的顶点、对称轴的方法Ø公式法:,∴顶点是,对称轴是直线.Ø配方法:运用配方的方法,将抛物线的解析式化为的形式,得到顶点为(,),对称轴是直线.Ø运用抛物线的对

6、称性:由于抛物线是以对称轴为轴的轴对称图形,所以对称轴的连线的垂直平分线是抛物线的对称轴,对称轴与抛物线的交点是顶点.用配方法求得的顶点,再用公式法或对称性进行验证,才能做到万无一失.²用待定系数法求二次函数的解析式Ø一般式:.已知图像上三点或三对、的值,通常选择一般式.Ø顶点式:.已知图像的顶点或对称轴,通常选择顶点式.Ø交点式:已知图像与轴的交点坐标、,通常选用交点式:.......²直线与抛物线的交点Ø轴与抛物线得交点为(0,).Ø与轴平行的直线与抛物线有且只有一个交点(,).Ø抛物线与轴的交点:二次函数的图像与轴的两个交点的横坐标、,是对应一元二次方程的两个实数根.抛物线与轴的交

7、点情况可以由对应的一元二次方程的根的判别式判定:①有两个交点抛物线与轴相交;②有一个交点(顶点在轴上)抛物线与轴相切;③没有交点抛物线与轴相离.Ø平行于轴的直线与抛物线的交点可能有0个交点、1个交点、2个交点.当有2个交点时,两交点的纵坐标相等,设纵坐标为,则横坐标是的两个实数根.Ø一次函数的图像与二次函数的图像的交点,由方程组的解的数目来确定:①方程组有两组不同的解时与有两个交点;②方程组只有一组解时与只有一个交点;③方程组无解时

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。