中考专题圆二次函数结合题

中考专题圆二次函数结合题

ID:28598818

大小:677.50 KB

页数:24页

时间:2018-12-11

中考专题圆二次函数结合题_第1页
中考专题圆二次函数结合题_第2页
中考专题圆二次函数结合题_第3页
中考专题圆二次函数结合题_第4页
中考专题圆二次函数结合题_第5页
资源描述:

《中考专题圆二次函数结合题》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库

1、.中考专题:圆与函数综合题1、如图,平面直角坐标系中,以点C(2,)为圆心,以2为半径的圆与轴交于A、B两点.(1)求A、B两点的坐标;(2)若二次函数的图象经过点A、B,试确定此二次函数的解析式. 2、如图,半径为2的⊙C与x轴的正半轴交于点A,与y轴的正半轴交于点B,点C的坐标为(1,0).若抛物线过A、B两点.(1)求抛物线的解析式;(2)在抛物线上是否存在点P,使得∠PBO=∠POB?若存在,求出点P的坐标;若不存在说明理由;(3)若点M是抛物线(在第一象限内的部分)上一点,△MAB的面积为

2、S,求S的最大(小)值.......3、如图,抛物线的对称轴为轴,且经过(0,0),()两点,点P在抛物线上运动,以P为圆心的⊙P经过定点A(0,2),(1)求a,b,c的值;   (2)求证:点P在运动过程中,⊙P始终与轴相交;(3)设⊙P与轴相交于M,N两点,当△AMN为等腰三角形时,求圆心P的纵坐标。4、如图,二次函数y=x2+bx-3b+3的图象与x轴交于A、B两点(点A在点B的左边),交y轴于点C,且经过点(b-2,2b2-5b-1).(1)求这条抛物线的解析式;(2)⊙M过A、B、C三点

3、,交y轴于另一点D,求点M的坐标;(3)连接AM、DM,将∠AMD绕点M顺时针旋转,两边MA、MD与x轴、y轴分别交于点E、F,若△DMF为等腰三角形,求点E的坐标.......5、类比、转化、分类讨论等思想方法和数学基本图形在数学学习和解题中经常用到,如下是一个案例,请补充完整。原题:如图1,在⊙O中,MN是直径,AB⊥MN于点B,CD⊥MN于点D,∠AOC=90°,AB=3,CD=4,则BD=          。⑴尝试探究:如图2,在⊙O中,MN是直径,AB⊥MN于点B,CD⊥MN于点D,点E

4、在MN上,∠AEC=90°,AB=3,BD=8,BE:DE=1:3,则CD=          (试写出解答过程)。⑵类比延伸:利用图3,再探究,当A、C两点分别在直径MN两侧,且AB≠CD,AB⊥MN于点B,CD⊥MN于点D,∠AOC=90°时,则线段AB、CD、BD满足的数量关系为      。⑶拓展迁移:如图4,在平面直角坐标系中,抛物线经过A(m,6),B(n,1)两点(其中0<m<3),且以y轴为对称轴,且∠AOB=90°,①求mn的值;②当S△AOB=10时,求抛物线的解析式。6、如图,

5、设抛物线交x轴于A,B两点,顶点为D.以BA为直径作半圆,圆心为M,半圆交y轴负半轴于C.  (1)求抛物线的对称轴;  (2)将△ACB绕圆心M顺时针旋转180°,得到△APB,如图.求点P的坐标;       (3)有一动点Q在线段AB上运动,△QCD的周长在不断变化时是否存在最小值?若存在,求点Q的坐标;若不存在,说明理由.......7、如图1,已知抛物线y=-x2+bx+c经过点A(1,0),B(-3,0)两点,且与y轴交于点C.(1)求b,c的值。(2)在第二象限的抛物线上,是否存在一点

6、P,使得△PBC的面积最大?求出点P的坐标及△PBC的面积最大值.若不存在,请说明理由.(3)如图2,点E为线段BC上一个动点(不与B,C重合),经过B、E、O三点的圆与过点B且垂直于BC的直线交于点F,当△OEF面积取得最小值时,求点E坐标.8、如图,点P在y轴的正半轴上,⊙P交x轴于B、C两点,以AC为直角边作等腰Rt△ACD,BD分别交y轴和⊙P于E、F两点,交连结AC、FC.(1)求证:∠ACF=∠ADB;(2)若点A到BD的距离为m,BF+CF=n,求线段CD的长;(3)当⊙P的大小发生变

7、化而其他条件不变时,的值是否发生变化?若不发生变化,请求出其值;若发生变化,请说明理由.......9、如图,在平面直角坐标系xOy中,半径为的圆C与x轴交于A(-1,0)、B(3,0)两点,且点C在x轴的上方.(1)求圆心C的坐标;(2)已知一个二次函数的图像经过点A、B、C,求这二次函数的解析式;(3)设点P在y轴上,点M在(2)的二次函数图像上,如果以点P、M、A、B为顶点的四边形是平行四边形,请你直接写出点M的坐标.10、如图,在⊙M中,弦AB所对的圆心角为120°,已知圆的半径为1cm,并

8、建立如图所示的直角坐标系.(1)求圆心M的坐标;(2)求经过A,B,C三点的抛物线的解析式;(3)点P是⊙M上的一个动点,当△PAB为Rt△时,求点p的坐标。......11、如图,在半径为2的扇形AOB中,∠AOB=90°,点C是弧AB上的一个动点(不与点A、B重合)OD⊥BC,OE⊥AC,垂足分别为D、E.(1)当BC=1时,求线段OD的长;(2)在△DOE中是否存在长度保持不变的边?如果存在,请指出并求其长度,如果不存在,请说明理由;(3)设BD=x,△DOE的

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。