弧长扇形面积讲义

弧长扇形面积讲义

ID:28596095

大小:489.50 KB

页数:14页

时间:2018-12-11

弧长扇形面积讲义_第1页
弧长扇形面积讲义_第2页
弧长扇形面积讲义_第3页
弧长扇形面积讲义_第4页
弧长扇形面积讲义_第5页
资源描述:

《弧长扇形面积讲义》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库

1、.学科教师辅导讲义教学内容同步知识梳理1.圆周长:圆面积:2.圆的面积C与半径R之间存在关系,即360°的圆心角所对的弧长,因此,1°的圆心角所对的弧长就是。n°的圆心角所对的弧长是P120*这里的180、n在弧长计算公式中表示倍分关系,没有单位。3.由组成圆心角的两条半径和圆心角所对的弧所围成的圆形叫做扇形。发现:扇形面积与组成扇形的圆心角的大小有关,圆心角越大,扇形面积也就越大。4.在半径是R的圆中,因为360°的圆心角所对的扇形的面积就是圆面积,所以圆心角为n°的扇形面积是:(n也是1°的倍数,无单位)5.圆锥的概念观察模型可以发现:圆锥是由一个底面和一个侧面围成的。其中底面

2、是一个圆,侧面是一个曲面,如果把这个侧面展开在一个平面上,展开图是一个扇形。如图,从点S向底面引垂线,垂足是底面的圆心O,垂线段SO的长叫做圆锥的高,点S叫做圆锥的顶点。......锥也可以看作是由一个直角三角形旋转得到的。也就是说,把直角三角形SOA绕直线SO旋转一周得到的图形就是圆锥。其中旋转轴SO叫做圆锥的轴,圆锥的轴通过底面圆的圆心,并且垂直于底面。另外,连结圆锥的顶点和底面圆上任意一点的线段SA、SA1、SA2、……都叫做圆锥的母线,显然,圆锥的母线长都相等。母线定义:连接圆锥顶点和底面圆周上任意一点的线段叫做圆锥的母线。P1226.圆锥的性质由图可得(1)圆锥的高所在的

3、直线是圆锥的轴,它垂直于底面,经过底面的圆心;(2)圆锥的母线长都相等7.圆锥的侧面展开图与侧面积计算圆锥的侧面展开图是一个扇形,这个扇形的半径是圆锥侧面的母线、圆心是圆锥的顶点、弧长是圆锥底面圆的周长。圆锥侧面积是扇形面积。如果设扇形的半径为l,弧长为c,圆心角为n(如图),则它们之间有如下关系:同时,如果设圆锥底面半径为r,周长为c,侧面母线长为l,那么它的侧面积是:圆锥的全面积为:例:在⊙中,120°的圆心角所对的弧长为,那么⊙O的半径为___________cm。答案:120......解:由弧长公式:得:例:若扇形的圆心角为120°,弧长为,则扇形半径为_________

4、____,扇形面积为____________________。答案:15;25π例:如果一个扇形的面积和一个圆面积相等,且扇形的半径为圆半径的2倍,这个扇形的中心角为____________。答案:90°例:已知扇形的周长为28cm,面积为49cm2,则它的半径为____________cm。答案:7例:两个同心圆被两条半径截得的,,又AC=12,求阴影部分面积。解:设OC=r,则OA=r+12,∠O=n°∴OC=18,OA=OC+AC=30例:如图,已知正方形的边长为a,求以各边为直径的半圆所围成的叶形的总面积。解:∵正方形边长为a......∴,∴叶的总面积为*也可看作四个半圆

5、面积减去正方形面积例:已知AB、CD为⊙O的两条弦,如果AB=8,CD=6,的度数与的度数的和为180°,那么圆中的阴影部分的总面积为?解:将弓形CD旋转至B,使D、B重合如图,C点处于E点的度数为180°∴AE是⊙O的直径∴∠ABE=90°又∵AB=8,BE=CD=6由勾股定理∴半径例:在△AOB中,∠O=90°,OA=OB=4cm,以O为圆心,OA为半径画,以AB为直径作半圆,求阴影部分的面积。......解:∵OA=4cm,∠O=90°∴,则阴影部分的面积为:例:①、②……是边长均大于2的三角形,四边形、……、凸n边形,分别以它们的各顶点为圆心,以1为半径画弧与两邻边相交,得

6、到3条弧,4条弧,……(1)图①中3条弧的弧长的和为_________________图②中4条弧的弧长的和为_________________(2)求图中n条弧的弧长的和(用n表示)解:(1)π,2π(2)解法1:∵n边形内角和为:(n-2)180°前n条弧的弧长的和为:个以某定点为圆心,以1为半径的圆周长∴n条弧的弧长的和为:解法2:设各个扇形的圆心角依次为则∴n条弧长的和为:......例:如图,在Rt△ABC中,已知∠BCA=90°,∠BAC=30°,AC=6m,把△ABC以点B为中心逆时针旋转,使点C旋转到AB边的延长线上的点C'处,那么AC边扫过的图形(阴影部分)的面积

7、为?分析:在Rt△ACB中,∠C=90°,∠BAC=30°,AB=6法一:法二:以B为圆心,BC为半径画弧交A'B于D,AB于D'有,......例:如图,已知Rt△ABC的斜边AB=13cm,一条直角边AC=5cm,以直线AC为轴旋转一周得一个圆锥。求这个圆锥的表面积。如果以直线AB为轴旋转一周,能得到一个什么样的图形?解:以直线AC为轴旋转一周所得的圆锥如图所示,它的表面积为:以直线AB为轴旋转一周,所得到的图形如图所示。......例:一个圆锥的模型,这个模型的

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。