采用双管正激的高效率大功率适配器.doc

采用双管正激的高效率大功率适配器.doc

ID:28594888

大小:85.00 KB

页数:6页

时间:2018-12-11

采用双管正激的高效率大功率适配器.doc_第1页
采用双管正激的高效率大功率适配器.doc_第2页
采用双管正激的高效率大功率适配器.doc_第3页
采用双管正激的高效率大功率适配器.doc_第4页
采用双管正激的高效率大功率适配器.doc_第5页
资源描述:

《采用双管正激的高效率大功率适配器.doc》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、高效率大功率适配器的研究推荐给好友打印加入收藏更新于2007-07-3002:39:02适配器拓扑功率因数同步整流被过滤广告1引言  随着技术的发展,电脑CPU的工作频率越来越高,其信息处理能力及各方面功能越来越强,这样就要求为之供电的适配器功率相应较大。目前DELL等公司已为其生产销售的移动PC、笔记本电脑,向电源生产商提出了150W甚至200W适配器的供货要求。对于如此大功率适配器,从安全角度考虑,要求适配器的密封性能要好;为便于携带,同时又希望适配器的体积小。但这些要求却不利于适配器的散热(由于损耗

2、所产生的热量),为此必须采用高效率、低损耗的解决方法。针对下一代大功率笔记本电脑适配器,本文提出了一种高效率的拓扑结构,并分析研究了其电路工作原理,最后给出了电路参数的选取方法和实验结果。2工作原理  笔记本电脑适配器是一种高质量直流输出电源,一般要求它具有宽的交流输入电压范围:90V~264V,并且能够适应输入电压频率的波动:47Hz~63Hz。对于输入功率大于75瓦的适配器,还要求其输入电流谐波满足IEC-1000-3-2ClassD标准,为此适配器须有功率因数校正(PFC)功能。  本文介绍的大功率

3、150瓦笔记本电脑适配器,其输出电压:直流12V;电压调整率:£±5%;额定输出电流:12.5A。为满足高功率密度及低成本等要求,经综合考虑,该适配器采用两级电路架构,如图1所示。前级PFC是升压Boost变换器结构,采用电流临界断续模式(DCMB)控制;后级直流变换DC/DC部分采用双管正激变换器并对二次侧实行同步整流。图1 适配器的电路结构2.1功率因数校正(PFC)电路  由图1可知,交流输入电压Vi经整流桥CR1、输入滤波器L1、C1后,通过电感L2、开关S1、二极管D1组成的Boos

4、t电路变换为直流母线输出电压VB。图2PFC电流临界断续模式控制原理时序  PFC工作原理时序[1],如图2所示。PFC输出电压VB的反馈信号与PFC控制芯片(如ST公司L6561)内部基准信号比较后,产生一电压误差信号;在误差放大器的带宽足够低时(如20Hz以下),该电压误差信号就是一个直流量;此信号和输入整流电压相乘后,得到PFC电感峰值电流基准信号(见图2)。开关S1开通后,PFC电感电流iL2线形上升,达到峰值电流基准时,S1关断;随后iL2通过二极管D1续流,同时向电容C2充电,在电压VB的压迫

5、下,iL2线形下降;当PFC控制芯片检测到电感电流iL2为零时,开关S1将再次开通,开始下一个开关周期。电感电流iL2经输入滤波器L1、C1滤波,得到连续光滑的正弦输入电流,即图2中所示的平均电流,其值为PFC电感峰值电流基准的一半。  由于开关S1是在电流iL2为零时开通的,故开关S1是零电流开通(ZCS),因此PFC的开关损耗大为减少;另外由于S1开通时,二极管D1的电流已经为零,所以D1的反向恢复问题也得到解决,由反向恢复引起的损耗将不存在,D1用普通的二极管即可。因控制简单,PFC可采用低成本的控

6、制芯片。  由上分析可知,电流临界断续模式控制的PFC不仅变换效率高,而且还具有控制简单、成本低等优点。2.2双管正激DC/DC直流变换电路  为将较高的直流母线电压VB(约390V)变换成较低的适配器输出电压Vo(12V),DC/DC部分采用了双管正激直流变换器,它由开关管S2、S3、续流二极管D2、D3、变压器Tr、同步整流管S4、同步续流管S5、输出滤波器Lo、Co构成(参看图1)。变压器的作用是实现原、副边隔离及输入、输出电压匹配。图3双管正激直流变换器控制原理时序  双管正激直流变换器的控制原理

7、时序,见图3所示(以滤波电感电流iLo连续为例)。为分析方便,假定开关管S2、S3的漏源电容为零,这样其漏源电压就能够瞬时变化。其中Vgs2、Vgs3分别是S2、S3的控制信号,两者时序完全相同。  t0~t1:t0时刻,S2、S3同时开通,变压器Tr原边绕组EF的电压为VB,即VEF=VB,则副边电压VGH=VB*N2/N1,输出滤波电感Lo中的电流iLo经电感Lo、电容Co(包括负载)、同步整流管S4、变压器副边绕组HG流通,电感Lo的前端电压VG=VGH=VB*N2/N1。由于此时VG大于适配器输出

8、电压Vo,故iLo从iLomin线形上升到iLomax。  t1~t2:t1时刻,S2、S3同时关断,变压器原边绕组电流经二极管D2、D3续流,同时变压器进行磁复位,此时VEF=-VB,副边电压VGH=-VB*N2/N1,S2、S3的漏源电压VDS2=VDS3=VB;iLo经电感Lo、电容Co(包括负载)、同步续流管S5流通,Lo的前端电压VG=0。由于VG小于输出电压Vo,故iLo从iLomax线形下降。  t2~t3:t2

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。