大功率IGBT技术现状及其发展趋势.docx

大功率IGBT技术现状及其发展趋势.docx

ID:28377309

大小:422.58 KB

页数:12页

时间:2018-12-09

大功率IGBT技术现状及其发展趋势.docx_第1页
大功率IGBT技术现状及其发展趋势.docx_第2页
大功率IGBT技术现状及其发展趋势.docx_第3页
大功率IGBT技术现状及其发展趋势.docx_第4页
大功率IGBT技术现状及其发展趋势.docx_第5页
资源描述:

《大功率IGBT技术现状及其发展趋势.docx》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、大功率IGBT技术现状及其发展趋势www.p-e-china.com2014-2-2110:40:35来源:中国电力电子产业网电力电子论坛  摘要:本文分别从IGBT芯片体结构、背面集电极区结构和正面MOS结构出发,系统分析了大功率IGBT芯片的技术现状与特点,从芯片焊接与电极互连两方面全面介绍了IGBT模块封装技术,并从新结构、新工艺及新材料技术三方面分析了IGBT技术未来的发展方向。  关键词:绝缘栅双极晶体管;芯片;模块;结构;封装技术;  1引言  绝缘栅双极晶体管(InsulatedGateBipolarTrans

2、istor,IGBT)是在金属氧化物场效应晶体管(MOSFET)和双极晶体管(Bipolar)基础上发展起来的一种新型复合功率器件,具有MOS输入、双极输出功能。IGBT集Bipolar器件通态压降小、载流密度大、耐压高和功率MOSFET驱动功率小、开关速度快、输入阻抗高、热稳定性好的优点于一身。作为电力电子变换器的核心器件,为应用装置的高频化、小型化、高性能和高可靠性奠定了基础[1]。  自IGBT商业化应用以来,作为新型功率半导体器件的主型器件,IGBT在1—100kHz的频率应用范围内占据重要地位,其电压范围为600V

3、—6500V,电流范围为1A—3600A(140mmx190mm模块)。IGBT广泛应用于工业、4C(通信、计算机、消费电子、汽车电子)、航空航天、国防军工等传统产业领域以及轨道交通、新能源、智能电网、新能源汽车等战略性新兴产业领域。采用IGBT进行功率变换,能够提高用电效率和质量,具有高效节能和绿色环保的特点,是解决能源短缺问题和降低碳排放的关键支撑技术,因此被称为功率变流产品的“CPU”、“绿色经济之核”。在未来很长一段时间内,为适应全球降低CO2排放的战略需要,IGBT必将扮演更为重要的角色,是节能技术和低碳经济的重要

4、支点。  目前,世界各大功率半导体公司对IGBT的研发热潮日益高涨,研究步伐和技术革新日益加快,IGBT芯片的设计与生产厂家有英飞凌(Infineon)、ABB、三菱(MitsubishiElectric)、Dynex(中国南车,CSR)、IXYSCorporation、InternationalRectifier、Powerex、Philips、Motorola、FujiElectric、Hitachi、Toshiba等,主要集中在欧、美、日等国家。因为种种原因,国内在IGBT技术研究开发方面虽然起步较早,但进展缓慢,特别

5、是在IGBT产业化方面尚处于起步阶段,作为全球最大的IGBT应用市场,IGBT模块主要依赖进口。近年来,在国家宏观政策的引导和组织下,国内企业通过各种途径在IGBT芯片、模块等领域已经取得很多可喜的进展,中国南车通过并购英国Dynex半导体,充分利用欧洲丰富的技术资源,成立功率半导体海外研发中心,迅速掌握了先进的1200V-6500VIGBT芯片设计、工艺制造及模块封装技术,并且在株洲建设了一条先进的8英寸IGBT芯片及其封装生产线,并将于2014年初实现IGBT芯片量产。  在模块封装技术方面,国内基本掌握了传统的焊接式封

6、装技术,其中中低压IGBT模块封装厂家较多,高压IGBT模块封装主要集中在南车与北车两家公司。与国外公司相比,技术上的差距依然存在。国外公司基于传统封装技术相继研发出多种先进封装技术,能够大幅提高模块的功率密度、散热性能与长期可靠性,并初步实现了商业应用。  2技术现状  2.1IGBT芯片技术  IGBT芯片在结构上是由数万个元胞(重复单元)组成,工艺上采用大规模集成电路技术和功率器件技术制造而成[2]。每个元胞结构如下图2所示,可将其分成体结构、正面MOS结构及背面集电极区结构三部分。  商用IGBT的体结构设计技术的发

7、展经历了从穿通(PunchThrough,PT)到非穿通(NonPunchThrough,NPT),再到软穿通(SoftPunchThrough,SPT)的过程,如图3所示[3]。而在穿通结构之前,IGBT的体结构是基于厚晶圆扩散工艺的非穿通结构,背部空穴的注入效率很高,由于器件内部的寄生晶闸管结构,IGBT在工作时容易发生闩锁,因此很难实现商用。随着外延技术的发展,引入了N型缓冲层形成穿通结构,降低了背部空穴注入效率,并实现了批量应用,但由于外延工艺的特点,限制了高压IGBT的发展,其最高电压等级为1700V。随着区熔薄晶

8、圆技术发展,基于N型衬底的非穿通结构IGBT推动了电压等级不断提高,并通过空穴注入效率控制技术使IGBT具有正温度系数,能够较好地实现并联应用,提高了应用功率等级。随着电压等级不断提高,芯片衬底厚度也迅速增加,并最终导致通态压降增大,为了优化通态压降与耐压的关系,局部穿通结构应运而生,AB

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。