资源描述:
《考研数学一历年真题答案_1》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、2002年考研数学一试题答案与解析一、填空题(1)【分析】原式(2)【分析】方程两边对两次求导得①②以代入原方程得,以代入①得,再以代入②得(3)【分析】这是二阶的可降阶微分方程.令(以为自变量),则代入方程得,即(或,但其不满足初始条件).分离变量得积分得即(对应);由时得于是积分得.又由得所求特解为(4)【分析】因为二次型经正交变换化为标准型时,标准形中平方项的系数就是二次型矩阵的特征值,所以是的特征值.又因,故(5)【分析】设事件表示“二次方程无实根”,则依题意,有而即二、选择题(1)【分析】这是讨论函数的连续性,可偏导性,可微性及偏导数的连续性之间的关系.我们
2、知道,的两个偏导数连续是可微的充分条件,若可微则必连续,故选(A).(2)【分析】由充分大时即时,且不妨认为因而所考虑级数是交错级数,但不能保证的单调性.按定义考察部分和原级数收敛.再考察取绝对值后的级数.注意发散发散.因此选(C).(3)【分析】证明(B)对:反证法.假设,则由拉格朗日中值定理,(当时,,因为);但这与矛盾(4)【分析】因为,说明方程组有无穷多解,所以三个平面有公共交点且不唯一,因此应选(B).(A)表示方程组有唯一解,其充要条件是(C)中三个平面没有公共交点,即方程组无解,又因三个平面中任两个都不行,故和,且中任两个平行向量都线性无关.类似地,(D
3、)中有两个平面平行,故,,且中有两个平行向量共线.(5)【分析】首先可以否定选项(A)与(C),因对于选项(B),若则对任何,因此也应否定(C),综上分析,用排除法应选(D).进一步分析可知,若令,而则的分布函数恰是三、【解】用洛必达法则.由题设条件知由于,故必有又由洛必达法则及,则有.综上,得四、【解】由已知条件得故所求切线方程为.由导数定义及数列极限与函数极限的关系可得五、【分析与求解】是正方形区域如图.因在上被积函数分块表示于是要用分块积分法,用将分成两块:(关于对称)(选择积分顺序)六、【分析与求解】(1)易知原函数,在上原函数,即.积分在与路径无关.(2)因
4、找到了原函数,立即可得七、【证明】与书上解答略有不同,参见数三2002第七题(1)因为幂级数的收敛域是,因而可在上逐项求导数,得,,所以.(2)与相应的齐次微分方程为,其特征方程为,特征根为.因此齐次微分方程的通解为.设非齐次微分方程的特解为,将代入方程可得,即有.于是,方程通解为.当时,有于是幂级数的和函数为八、【分析与求解】(1)由梯度向量的重要性质:函数在点处沿该点的梯度方向方向导数取最大值即的模,(2)按题意,即求求在条件下的最大值点在条件下的最大值点.这是求解条件最值问题,用拉格朗日乘子法.令拉格朗日函数则有解此方程组:将①式与②式相加得或若,则由③式得即若
5、由①或②均得,代入③式得即于是得可能的条件极值点现比较在这些点的函数值:因为实际问题存在最大值,而最大值又只可能在中取到.因此在取到在的边界上的最大值,即可作为攀登的起点.九、【解】由线性无关及知,向量组的秩,即矩阵的秩为因此的基础解系中只包含一个向量.那么由知,的基础解系是再由知,是的一个特解.故的通解是其中为任意常数.十、【解】(1)若相似,那么存在可逆矩阵,使故(2)令那么但不相似.否则,存在可逆矩阵,使.从而,矛盾,亦可从而知与不相似.(3)由均为实对称矩阵知,均相似于对角阵,若的特征多项式相等,记特征多项式的根为则有相似于也相似于即存在可逆矩阵,使于是由为可
6、逆矩阵知,与相似.十一、【解】由于依题意,服从二项分布,则有十二、【解】的矩估计量为根据给定的样本观察值计算因此的矩估计值对于给定的样本值似然函数为令,得方程,解得(不合题意).于是的最大似然估计值为2003年硕士研究生入学考试(数学一)试题及答案解析一、填空题(本题共6小题,每小题4分,满分24分.把答案填在题中横线上)(1)=.【分析】型未定式,化为指数函数或利用公式=进行计算求极限均可.【详解1】=,而,故原式=【详解2】因为,所以原式=【评注】本题属常规题型(2)曲面与平面平行的切平面的方程是.【分析】待求平面的法矢量为,因此只需确定切点坐标即可求出平面方程,
7、而切点坐标可根据曲面切平面的法矢量与平行确定.【详解】令,则,,.设切点坐标为,则切平面的法矢量为,其与已知平面平行,因此有,可解得,相应地有故所求的切平面方程为,即.【评注】本题属基本题型。(3)设,则=1.【分析】将展开为余弦级数,其系数计算公式为.【详解】根据余弦级数的定义,有===1.【评注】本题属基本题型,主要考查傅里叶级数的展开公式,本质上转化为定积分的计算.(4)从的基到基的过渡矩阵为.【分析】n维向量空间中,从基到基的过渡矩阵P满足[]=[]P,因此过渡矩阵P为:P=[[.【详解】根据定义,从的基到基的过渡矩阵为P=[[.=【评注】本