高考中的天体运动问题目专项练习

高考中的天体运动问题目专项练习

ID:28270782

大小:161.04 KB

页数:6页

时间:2018-12-09

高考中的天体运动问题目专项练习_第1页
高考中的天体运动问题目专项练习_第2页
高考中的天体运动问题目专项练习_第3页
高考中的天体运动问题目专项练习_第4页
高考中的天体运动问题目专项练习_第5页
资源描述:

《高考中的天体运动问题目专项练习》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、盘点2011年高考试题中的天体运动问题 邢彦君2011年高考试题中的天体运动问题,试题情境熟悉,多为匀速圆周运动模型,不是卫星环绕地球的圆周运动,就是行星环绕太阳的圆周运动。运算简单,大多数试题直接运用开普勒第三定律进行分析或计算,有些试题则需运用牛顿第二定律与万有引力定律、“黄金代换”等分析计算。一、运用开普勒第三定律类问题开普勒第三定律适用于一个天体绕另一个天体的椭圆运动。对于天体沿椭圆轨道的环绕运动,椭圆轨道的半长轴立方与运动周期平方的比值等于常数,对于环绕同一天体运动的天体,定律中的常数是相同的。对于一个天体环绕另一天体的圆周运动,开普勒第三定律照样适用,这时定律中的半长轴应变为

2、圆形轨道的半径。例1.(全国课标卷-19)卫星电话信号需要通过地球同步卫星传送。如果你与同学在地面上用卫星电话通话,则从你发出信号至对方接收到信号所需最短时间最接近于(可能用到的数据:月球绕地球运动的轨道半径约为3.8×105km,运行周期为27天,地球半径为6400km,无线电信号的传播速度为3.0×108m/s)A.0.1s   B.0.25s   C.0.5s   D.1s解析:对月球绕地球的运动、卫星绕地球的运动分别运用开普勒定律可得:。电磁波信号从地球表面到卫星再到地面的传播时间为:,代入月球绕地球轨道半径r、地球半径R、月球运动周期(27天)、卫星运动周期(1天)及光速解得:

3、t=0.24s,最接近0.25s。选项B对。例2.(海南物理-12)2011年4月10日,我国成功发射第8颗北斗导航卫星。建成以后的北斗导航卫星系统将包含多颗地球同步卫星,这有助于减少我国对GPS导航系统的依赖,GPS系统由运行周期为12小时的卫星群组成,设北斗系统的同步卫星和GPS导航卫星的轨道半径分别为R1和R2,向心加速度分别为a1和a2,则R1:R2=_____;a1:a2=_____(可用根式表示)。解析:北斗系统的同步卫星的运动周期为T1=24h,GPS导航卫星的运动周期为T1=12h。对北斗系列同步卫星及GPS导航卫星绕地球的运动分别运用开普勒第三定律有:、。解得:R1:R

4、2=;由万有引力定律、牛顿第二定律分别有:、。解得:a1:a2=。例3.(山东理综-17)甲、乙为两颗地球卫星,其中甲为地球同步卫星,乙的运行高度低于甲的运行高度,两卫星轨道均可视为圆轨道。以下判断正确的是A.甲的周期大于乙的周期B.乙的速度大于第一宇宙速度C.甲的加速度小于乙的加速度D.甲在运行时能经过北极的正上方 解析:由开普勒第三定律可知,甲的周期大于乙的周期。A对;对于卫星环绕地球的圆周运动,运用牛顿第二定律及万有引力定律有:或。解得:,。由于第一宇宙速度等于近地卫星的环绕速度,由可知,乙的速度小于第一宇宙速度;由可知,甲的加速度小于乙的加速度。B错C对。同步卫星的环绕运动与地球

5、的自转同步,其轨道平面应与赤道平面重合,它不可能经过北极正上方。D错。本题选AC。例4.(全国大纲卷-19)我国“嫦娥一号”探月卫星发射后,先在“24小时轨道”上绕地球运行(即绕地球一圈需要24小时)。然后,经过两次变轨依次到达“48小时轨道”和“72小时轨道”。最后奔向月球。如果按圆形轨道计算,并忽略卫星质量的变化,则每次变轨完成后与变轨前相比A.卫星动能增大,引力势能减小C.卫星动能减小,引力势能减小B.卫星动能增大,引力势能增大D.卫星动能减小,引力势能增大解析:对卫星绕地球的运动,由开普勒第三定律可知,运动周期大,轨道半径大。卫星由半径小的轨道进入半径较大的轨道,引力对卫星做负功

6、,卫星的引力势能增大,动能减小。D对。本题选D。例5.(重庆理综-21)某行星和地球绕太阳公转的轨道均可视为圆。每过N年,该行星会运行到日地连线的延长线上,如图所示。该行星与地球的公转半径比为A.        B.    C.       D.解析:由于每过N年,该行星会运动到日地连线的延长线上,所以有:。对地球、行星绕太阳的环绕运动运用开普勒第三定律得:。代入T1=1年,解得:。本题选B。例6.(安徽理综-22)(1)开普勒行星运动第三定律指出:行星绕太阳运动的椭圆轨道的半长轴a的三次方与它的公转周期T的二次方成正比,即,k是一个对所有行星都相同的常量。将行星绕太阳的运动按圆周运动处

7、理,请你推导出太阳系中该常量k的表达式。已知引力常量为G,太阳的质量为M太。(2)开普勒定律不仅适用于太阳系,它对一切具有中心天体的引力系统(如地月系统)都成立。经测定月地距离为3.84×108m,月球绕地球运动的周期为2.36×106s,试计算地球的质M地。(G=6.67×10-11Nm2/kg2,结果保留一位有效数字)解析:(1)因行星绕太阳作匀速圆周运动,于是轨道的半长轴a即为轨道半径r。根据万有引力定律和牛顿第二定律有:。解

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。