自动驾驶迟迟不能落地,真正的难点在哪?.doc

自动驾驶迟迟不能落地,真正的难点在哪?.doc

ID:28131875

大小:254.00 KB

页数:6页

时间:2018-12-08

自动驾驶迟迟不能落地,真正的难点在哪?.doc_第1页
自动驾驶迟迟不能落地,真正的难点在哪?.doc_第2页
自动驾驶迟迟不能落地,真正的难点在哪?.doc_第3页
自动驾驶迟迟不能落地,真正的难点在哪?.doc_第4页
自动驾驶迟迟不能落地,真正的难点在哪?.doc_第5页
资源描述:

《自动驾驶迟迟不能落地,真正的难点在哪?.doc》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、自动驾驶迟迟不能落地,真正的难点在哪?  自动驾驶也属于AI范畴,为什么迟迟不能落地呢?今天就围绕这个问题延伸下去感知、决策、控制是自动驾驶的三个技术环节,但真正的难点在哪呢?。。  技术的车轮滚滚向前,每隔一段时间当前技术就会被新技术更新或迭代。2017年AlphaGo战胜冠军棋手柯洁,并横扫了整个围棋界选手,让人类为之震惊,也拉开了人工智能(AI)深度学习时代的序幕。然而自动驾驶也属于AI范畴,为什么迟迟不能落地呢?今天就围绕这个问题延伸下去。    感知、决策、控制是自动驾驶的三个技术环节,

2、但真正的难点在哪呢?  感知既是对周围环境的了解,如同驾驶员的眼睛和耳朵。感知的设备无非是摄像头、声呐、各种各样的雷达,但客观的讲,摄像头三维空间效果差、雨雪恶略天气能见度低;毫米波雷达穿透能力弱;激光雷达无法识别颜色、文字且造价高昂,或多或少都存在缺陷。而多种感知设备组合则成为最优的解决方案,弥补了之间的不足,所以各个车厂的感知设备也大同小异,目前主要的难点是如何压缩成本。    自动驾驶汽车顶的激光雷达  控制是对车辆的掌控,如同驾驶员的手脚。车辆的加速、刹车、转向等皆属于控制范畴,然而这些控

3、制没有太高的技术要求,定速巡航、自动刹车、自适应巡航、自动泊车等功能已经在车辆控制方面积累了相当多的经验,所以自动驾驶的难点并不在控制。    特斯拉自动驾驶仪表显示  决策是通过感知收到周围的信息,计算出最优的方案,把信号传送给控制机构,如同驾驶员的大脑。决策环节承上启下,是决定汽车行驶的关键,所以自动驾驶的重点和难点皆聚于此!  *数据积累  围棋人机大战轰动一时,但AlphaGo在学习围棋技能时,通过大量数据分析了3000多万步职业棋手棋谱,并通过增强学习的方法自我博弈,寻找比更优的棋路,才

4、取得了傲人的成绩。而自动驾驶汽车也需要海量里程的实际路测,2016年美国智库兰德公司给出了一个准确的答案:路测里程需达到110亿英里。大量的路测试验以及后期分类标定、数据处理,尚且存在着许多不确定因素。如果各个车厂能把自己的数据共享,可能会加速自动驾驶的落地,但很显然核心数据是保密的!    HERE地图上线云导航服务加强自动驾驶  *逻辑难题  在现实生活中,路况千变万化非常复杂,自动驾驶稍有不慎就会造成人员伤亡。除了海量的数据分析及预设的决策依据,如果想要在非铺装路面或特殊环境保持高精度自动驾

5、驶,还需要AI在自动驾驶领域的进一步发展与利用。  虽然交通法规日益健全,但全世界范围内依然存在着不遵守交通规则的人、自行车。有个很经典的事故假设:一辆快速行驶的自动驾驶汽车,但前方路口有多人违反信号灯横穿马路,仅有一人在路旁等候,这时就需要自动驾驶去决策,是直行刹车撞多人还是转向刹车撞一人!这不仅仅是交通法规、法律的范畴,还有道德、人性的因素包含其中,自动驾驶它能懂吗?    深度学习的概念源于人工神经网络的研究  *算法难题  在既定的决策范围内,更多的样本数据是通过深度学习去理解、分析的。深

6、度学习的概念源于人工神经网络的研究,它通过组合低层特征形成更加抽象的高层表示属性类别或特征,以发现数据的分布式特征表示。  深度学习已经席卷了AI领域,但深度学习并不是万能的!深度学习没有分析能力,不知道原因也无法预测,它基本上取决与样本以及所要求输出的特征值。很显然,对于高精度自动驾驶来说,深度学习需要更理性的决策!

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。