欢迎来到天天文库
浏览记录
ID:28113230
大小:90.00 KB
页数:5页
时间:2018-12-08
《电流源设计中的运放振荡问题的解决方案.doc》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库。
1、电流源设计中的运放振荡问题的解决方案 对于工程师来说,电流源是个不可或缺的仪器,也有很多人想做一个合用的电流源,而应用开源套件,就只是用一整套的PCB,元件,程序等成套产品,参与者只需要将套件的东西焊接好,调试一下就可以了,这里面的技术含量能有多高,而我们能从中学到的技术又能有多少呢?本文只是从讲述原理出发,指导大家做个人人能掌控的电流源。本文主要就是设计到模拟部分的内容,而基本不涉及单片机,希望朋友能够从中学到点知识。 加速补偿--校正Aopen 校正Aopen是补偿的最佳方法,简单的Aopen补偿会起到1/F补偿难以达到的效果,但并非解决一切问题。 如果振荡由
2、于po位于0dB线之上造成,可想到的第一办法是去掉po. 去掉极点作用的基本方法是引入零点。 引入零点的最佳位置为Ro,Ro上并联电容Cs可为MOSFET输入端引入一个零点zo. 但Ro是运放内部电阻,无法操作,因此在Ro后添加一只电阻Rs,并将Cs与Rs并联。 如果Rs>Ro,则可基本忽略Ro的作用。 增加Rs和Cs后,会使MOSFET输入端的极点po和零点zo频率分别为: po=1/2pi(Cs+Cgs)Rs,zo=1/2pICsRs. 如果Cs>Cgs,则原有的极点po=1/2piRoCs由高频段移至低频段,频率由Cs、Cgs和Rs决定,而非Cgs
3、和Ro决定,新引入的零点zo也在低频段并与po基本重合,两者频率差由Cgs与Cs的比例决定,因而很小。 通常Rs=2k-5kOhm,Cs=0.01-0.1uF. Rs和Cs将原有极点po移至低频段并通过zo去除。像极了chopper运放里通过采样将1/f噪声量化到高频段后滤除。很多不沾边的方法思路都是相通的。 由瞬态方法分析,Cs两端电压不可突变,因此运放输出电压的变化会迅速反应到栅极,即Cs使为Cgs充电的电流相位超前pi/2.因此Cs起到加速电容作用,其补偿称为加速补偿或超前补偿。 很多类似电路里在Rs//Cs之后会串联一只小电阻,约100Ohm,再稍适调
4、整零点和极点位置,此处不必再加,那个忽略的Ro很合适。 看个范例,Agilent36xx系列的MOSFET输入级处理,由于PNP内阻很小,至少比运放低得多,因此后面有一只R42=100Ohm. 在此之前,如果看到C49和R39,恐怕很多坛友会很难理解其作用,然而这也正是体现模拟电路设计水平之处。有人感叹36xx系列电路的复杂,然而内行看门道,其实真正吃功夫的地方恰在几只便宜的0805电阻和电容上,而非那些一眼即可看出的LM399、AD712之类的昂贵元件。 后面两节里还会出现几只类似的元件,合计成本0.20元之内。 本次增加成本: 3.9kOhm电阻1只单价
5、0.01元,合计0.01元 0.1uF/50V电容1只单价0.03元,合计0.03元 合计0.04元 合计成本:9.46元 潜在的振荡:运放的高频主极点pH 通过加速补偿,由Cgs造成的极点作用基本消除。 然而,0dB线附近还有一个极点--运放的高频主极点pH. 事实上,就纯粹的运放而言,pH只在0dB线之下不远的位置。与po类似,由于gmRsample的增益作用,pH也有可能浮出0dB线,从而使Aopen与1/F的交点斜率差为40dB/DEC,引起振荡。 pH的位置比po低,因此gmRsample的增益必须更高才能使电路由于pH而产生振荡,然而gmRsa
6、mple由于datasheet中没有完整参数,实际上只能大致预测而无法精确计算。因此必须采取一定措施避免pH的作用。
此文档下载收益归作者所有