深度学习崛起带热人工智能 聚焦三大领域.doc

深度学习崛起带热人工智能 聚焦三大领域.doc

ID:28106711

大小:170.50 KB

页数:6页

时间:2018-12-08

深度学习崛起带热人工智能 聚焦三大领域.doc_第1页
深度学习崛起带热人工智能 聚焦三大领域.doc_第2页
深度学习崛起带热人工智能 聚焦三大领域.doc_第3页
深度学习崛起带热人工智能 聚焦三大领域.doc_第4页
深度学习崛起带热人工智能 聚焦三大领域.doc_第5页
资源描述:

《深度学习崛起带热人工智能 聚焦三大领域.doc》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、深度学习崛起带热人工智能聚焦三大领域  1月20日,第四季的最强大脑落下帷幕,这季比赛由于选手当中新增加了一位特殊成员被备受关注,来自百度的人工智能机器人小度在一场三局「人机大战」中取得两胜一平的成绩,这个结果彻底碾压了三位代表人脑极限的人类选手。这三场比赛中的每个细节都成为社交媒体上热议的焦点,这些争议一方面是公众惊叹于人工智能如此强大,或将取代人类;另一方面也夹杂了太多阴谋论的想象,强调此次人机大战的不公平性。  如果说前一种缘由源自于于技术,特别是对人工智能发展的无知;那么后一种声音则不仅是对人工智能的无知,也是对人类自身存在和未来的无知,可谓愚蠢至极。  棋盘和人类大脑都是人工智能的

2、标尺  事实上,尽管2016年人工智能领域如此火热,但从2016年1月到现在整整一年的时间,人工智能领域的震撼性事件只有三个:  •2016年1月24日,人工智能先驱马文明斯基离世;  •2016年1月27日,GoogleDeepMind在《自然》杂志发表论文,正式宣布破解了围棋;  •2017年1月20日,百度人工智能机器人小度击败第三位人类选手,在三局人机大战中完胜;  之所以将上述三件时间、空间都没有关系的事件摆在一起,根本原因在于,这三个事件既是结束,也开启了一个属于人工智能的新时代。从60多年前开始,不管是明斯基还是另外几位人工智能的先驱,摆在这些最顶尖科学家、数学家面前的首要问题

3、就是:如何衡量人工智能?  1920年代,美国心理学家LouisLeanThurstone在研究中发现,受访者在回答问题时更倾向于回答一些相对意义或者比较意义的问题,比如类似这样的问题「你更喜欢谁的画,A还是B?」就比单纯回答「你对A画喜欢多少?」要容易简单的多。这套理论被称为「比较性判断准则(LawofComparaTIveJudgement)」。通过让人们每次比较多个对象中的两个,而最终可以计算出每个对象的测量分数(定距尺度)。  其运用范围非常广泛,人工智能研究者终于不再为定义「智能」来担忧了,只需要将机器与人类放在某个同样环境下继续比赛,利用人的智能来衡量机器的智能。棋类游戏首先被用

4、于测试机器的智能,是因为棋类游戏是一种「完美」信息的游戏,对玩家们而言,无论人类还是机器,所面对的信息是透明且对等的——就是棋盘和棋子而已。  这样的暧昧情节始于1956年,IBM工程师ArthurSamuel创造了一种西洋跳棋的应用程序,并使用强化学习来训练这个程序。1962年的时候,ArthurSamuel的这个西洋跳棋程序打败了当时全美最强的业余选手RobertNealey。  接下来的最吸引人的两个故事就是卡斯帕罗夫与深蓝的世纪之战以及李世石大战AlphaGo,借助于电视、互联网、社交媒体等大众传媒的发展,全世界的人都看到了东西方两大棋类里的顶级人物低头认输的场景。  人工智能已经在

5、国际象棋、围棋证明了自己的能力,而挑战人类的最强大脑则成了衡量人工智能的另一个标尺。  此次最强大脑比赛,三场比赛涵盖了人脸识别、语音识别与视频(动态模糊图像)识别等多个领域。这些「技能」是人类长期进化过程所形成的,百度首席科学家吴恩达这样解释人类的人脸识别能力:「一个3岁的孩子看见妈妈时,不管妈妈是微笑、生气,睁着眼、闭着眼,长头发、短头发,穿什么衣服,孩子都可以轻易认出这是妈妈。」  更重要的是,人类的这种识别几乎是瞬间完成的,即便到现在,全世界顶尖的科学家也无法理解这背后的真正原理。而要让计算机拥有这种能力,科学家们在过去五十年里提出了诸多想法,但直到这几年,图像识别才真正实现了技术突

6、破。  与图像识别相似,语音、动态图像识别的技术发展进程也经历了漫长过程,这些依托新算法的人工智能技术,究竟离人类大脑,特别是那些具备超强能力的人类大脑还有多大差距,这次比赛提供了一个最好的观察视角,而比赛结果也充分说明了人工智能在某些领域的已然超越人类。当下人工智能只聚焦在特定领域  早几年的时候,李彦宏在参加《最强大脑》节目担任嘉宾后感言:「某些对于人类艰难的事情,对于电脑来说非常简单。」这话说得并不夸张,比如围棋这个领域,相比于人类棋手的成长速度,计算机的进化速度「令人窒息」,2016年年底横扫中韩高手的Master,也是AlphaGo的进化版,要AlphaGo真正「进入职业棋届」不过

7、一年多一点的时间,这种学习和进化速度是人类根本无法匹及的。  当下人工智能领域的火热得益于过去几年深度学习的崛起。最主要聚焦在三个领域:图像识别、语音识别以及自然语言处理。投资人DavidKelnar提供了两幅图像识别和语音识别进化速度对比图:      以图像识别为例,在2012年的图片分类竞赛ImageNet上,以深度神经网络为技术支撑的研究团队夺得第一,并将错误率降低到20%以下,让包括Google、F

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。