未来,自动驾驶将如何驶向远方?.doc

未来,自动驾驶将如何驶向远方?.doc

ID:28101296

大小:116.00 KB

页数:7页

时间:2018-12-08

未来,自动驾驶将如何驶向远方?.doc_第1页
未来,自动驾驶将如何驶向远方?.doc_第2页
未来,自动驾驶将如何驶向远方?.doc_第3页
未来,自动驾驶将如何驶向远方?.doc_第4页
未来,自动驾驶将如何驶向远方?.doc_第5页
资源描述:

《未来,自动驾驶将如何驶向远方?.doc》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、未来,自动驾驶将如何驶向远方?未来,自动驾驶将如何驶向远方?未来,自动驾驶将如何驶向远方?  自动驾驶的故事讲了这么久,落地却仍存在诸多困难。未来,自动驾驶将如何驶向远方?  近日,百度公司董事长兼CEO李彦宏宣布其L4级无人车“阿波龙”正式量产,即将发往国内北京、雄安、深圳、平潭、武汉等地进行商业化运营。市场一片惊呼。  自动驾驶,近几年汽车领域最火热的风口之一。麦肯锡最新研究报告显示,至2030年,中国自动驾驶相关的新车销售及出行服务创收将超过5000亿美元。  传统主机厂、互联网巨头、出行公司纷纷拥抱市场、卡位圈地。大量创业者也带着华丽丽的PPT一股脑儿地涌入自动

2、驾驶行业,各自都在说着自己的精彩故事。在他们身后,资本的力量不断加码。根据中国电动汽车百人会的统计,2015年到2017年11月,自动驾驶汽车相关领域的投融资事件共193起,金额达1438亿美元。  无人车量产的消息铺天盖地,市场情绪被不断调动,自动驾驶的时代仿佛明天就要来了。然而,随着今年3月18日,Uber自动驾驶测试车在美国亚利桑那州的一撞,一切似乎都冷静了。  百度无人车量产的消息就像一颗石子投入了水中,又激起了大片水花,赚足了眼球的同时,也引起了业内人士的质疑。按照美国汽车工程师协会(SAE)的定义,汽车自动驾驶系统分为L0~L5共6个级别,在这样的等级划分中

3、,L4级指高度自动驾驶,即在大多数场景下自动驾驶能够实现。“阿波龙”是否真正能达“标”,暂时得打一个问号。  国科嘉和基金管理合伙人王戈最近在第29届国际电气与电子工程师协会(IEEE)智能车大会上的一段话引起了业内的共鸣。他说,对于实现完全自动驾驶的时间,主机厂一般比较保守,至于有人说五年北京街头就能实现全自动驾驶,基本属于“屁股决定脑袋”。  自动驾驶的故事讲了这么久,落地却仍存在诸多困难。未来,自动驾驶将如何驶向远方?    究竟选择撞向哪儿  “在碰撞无可避免的情况下,无人车会撞向一个人的一侧还是撞向一群人的一侧?”“往前行驶会撞到人,往旁边让会撞到栏杆而导致车

4、内乘客受伤,无人车会怎么选择?”  “撞向哪儿”是一个经典的法律伦理问题。在有关智能驾驶的论坛中,业内人士总喜欢拿这个问题来说明智能驾驶技术的不成熟。去年,中科院自动化所复杂系统管理与控制国家重点实验室主任、自动化学会副理事长兼秘书长王飞跃在接受中国青年报·中青在线记者采访时,用“初中生”来形容当时无人车的发展情况。今年,面对同样的问题,他说当时的预估还是高了,“它离(初中)毕业还有很长一段距离。”  很长一段时间,国内对自动驾驶技术的发展都过于乐观与自信,王戈记得,三年前和自动驾驶的创业团队聊天,许多人考虑的是直接往全自动驾驶方向发展还是像传统主机厂一样渐进式发展,全

5、然没考虑底层技术的研发问题。“企业拼命吹气球,也不管吹不吹破,都急于变现,恨不得明天就上路。”王飞跃也一脸激动。随着自动驾驶事故的频发,这样的泡沫总算慢慢消退了。  目前,业内多数专家认为,我们当前的自动驾驶技术基本介于L2级和L3级之间,从整体的研究发展来讲,L2、L3级的研发主要集中在企业,L4、L5级集中在科研机构,其中需要突破的瓶颈还很多。  “无人车关键要解决两大问题,场景理解和自主运动”,西安交通大学人工智能与机器人研究所的崔迪潇博士表示,场景理解的核心是要处理传感的数据,在传感数据融合的基础上给出场景结构化描述,并进行几何、物理及语义层次上的推理,这些将会

6、形成无人车自主运动的时空约束,自主运动则要根据时空约束来适应场景的动态变化,控制车辆。而现在,“无人车的目的性和主动性都不足”,崔迪潇表示,现在的无人车计算效率低、环境适应性差、自学能力不足,在复杂的交通环境中远远不及人类驾驶员。  想让无人车变得更智能,底层技术短时间突破不了,技术人员只能让它不断去学习,积累数据。他们正在不断给无人车加装雷达以期它“看”得更清楚,一幅幅地图也不断被无人车的“大脑”所记忆,但复杂的交通场景根本描述不完,种种突发状况的发生也让无人车手足无措,同时,高昂的路测成本也令数据的收集变得困难。  在本世纪初,王飞跃首次提出了基于社会物理信息系统(

7、CPSS)的平行驾驶框架,在平行驾驶的框架下,当人类司机驾着物理车辆奔驰时,作为“软件机器人”的智能代理,也开着对应的“虚拟车”同时在虚拟世界中奔驰。虚拟场景的构建大大减少了数据收集的成本,但无法主动学习、分析场景做出决策始终是现阶段的无人车迈不过去的坎儿。  警惕自动驾驶中的“马粪问题”  虽然无人车的落地仍困难重重,但不可否认,这几年,智能驾驶的发展取得了相当的进步。王飞跃记得,1997年,加州圣地亚哥举行Demo’97(TheNAHSC1997TechnicalFeasibilityDemonstration)无人车集中演示时,一辆

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。