机器学习和区块链的结合可创造强大的机器之能.doc

机器学习和区块链的结合可创造强大的机器之能.doc

ID:28100562

大小:226.50 KB

页数:11页

时间:2018-12-08

机器学习和区块链的结合可创造强大的机器之能.doc_第1页
机器学习和区块链的结合可创造强大的机器之能.doc_第2页
机器学习和区块链的结合可创造强大的机器之能.doc_第3页
机器学习和区块链的结合可创造强大的机器之能.doc_第4页
机器学习和区块链的结合可创造强大的机器之能.doc_第5页
资源描述:

《机器学习和区块链的结合可创造强大的机器之能.doc》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、机器学习和区块链的结合可创造强大的机器之能  机器学习和区块链的结合可创造强大的机器之能  机器学习和区块链的结合可创造强大的机器之能  机器学习和区块链的结合可创造强大的机器之能    且不论区块链和人工智能行业中存在的泡沫。如果我们能建立一个基于区块链的机器学习市场,那它就结合了两大优势:一是私人化的机器学习,即允许在不透露用户敏感隐私数据的情况下训练模型;二是区块链的激励机制,它会优先选择最佳数据和模型,并使其变得更智能。它们共同作用的结果就是一个开放的市场:任何人都能在里面出售数据,同时保证数据的安全性

2、;而开发者则可以通过激励机制为算法筛选优质数据。  构建这样一个系统是极具挑战性的。虽然一些关键的区块还没有人做出来过,但如果只是构建一个简单的初始版本,这在现在已经不是一件难事。我们现还处于Web2.0时代,这是个数据都被市场、大公司垄断的时代,也是个不公平的时代。如果我们建立了这样一个市场,那它就能真正开启数据和算法的全面公开竞争,提前让每个人迈入Web3.0时代。简而言之,在这样的市场中,我们的数据和算法都能被直接货币化。  起源  这个灵感来自2015年查德·努梅莱的采访对话。Numer.ai是一个向参

3、赛者开放大量加密数据机器学习竞赛平台,被称为金融市场的Kaggle。它也是一家对冲基金,利用数据科学家训练出的模型进行资本运作。把加密后的市场数据分发下去后,Numer.ai会从竞赛中挑选出最好的模型放入“元模型”中,如果“元模型”表现良好(盈利),那相关数据科学家就能从中得到分红。  像这样让数据科学家们参与竞争的方法似乎是一个可行的思路,既然Numer.ai能把原本完全分散的各个模型整合在一起用于对冲基金,那从理论上来说,同样的做法也适用于其他任何领域。  尝试  作为一个示例,我们可以先试着创建一个完全分

4、散的系统,并把它用于用于加密货币零散交易,这事实上也是区块链的一个潜在应用场景。    数据(DATA):数据提供者分类数据,并把它们提供给建模人员。  模型构建(MODELS):建模人员筛选出合适的数据,并创建模型。为了防止数据泄露,系统要保证训练过程的安全性,上图的结构就允许模型在不暴露底层数据的情况下进行训练。模型也被分类。  元模型构建(METAMODELS):元模型的构建需要考虑各模型的分类算法,在这基础上重新整合。——当然,这一步只是个可选项,你也可以不把所有模型都放在一个篮子里。  分配收益/损失

5、:经过一个周期后,我们在加密货币交易中赚取利润/亏损了,这时各模型就要承担利润/损失分成。这不是一个一刀切的过程,有些模型只提供部分积极/消极贡献,而有些模型则全部是积极/消极贡献,系统会考虑这些因素,并依据它们的智能程度进行奖惩。这之后,模型会转向数据提供者,并执行类似的股权分发/削减。  可验证计算:每个步骤的计算可以是集中式的,也可以用安全多方计算。它能不断进行验证。  为什么这个系统如此强大?  它能吸引全球最佳数据。这个系统中最有效的部分在于它吸引数据的激励措施,因为数据往往是大多数机器学习任务的最大

6、限制因素之一。通过开放式的激励机制,比特币在全球范围内吸引了大量算力,同理,一个设计合理的激励机制也能为机器学习模型带来世界上最好的数据。如果还像现在这样去检索上百万个源上的封闭数据,我们什么都做不了。  算法间的竞争。我们现在还无法拥有这种算法、模型之间全面公开竞争的机会,但我们确实需要它们。试想一下,如果Facebook的新闻推送算法不是一家独大,那它还会闹出“数据泄露”的丑闻吗?  奖励透明。在这种机制下,数据提供者和建模人员能看到自己所做贡献的价值,并能亲身参与计算验证,这很有可能会提高他们的参与度。 

7、 自动化。元模型构建完成后,它会进入一个行动闭环,这时系统是完全自动的。换句话说,这样的自动化能降低贡献者心中的疑虑。  网络效应。数据提供者和数据科学家之间多面的网络效应能使系统不断进行自我强化。系统表现越好,它吸引的资金就越多,相应的它的潜在支出也就越多——越来越多的数据提供者和数据科学家会争相参与其中,并使系统变得更智能。而更智能的系统又会吸引更多的资本,这就步入了一个良性循环。  安全计算  安全计算允许模型在数据上进行训练而不会泄露数据本身。目前被工业界和学术界广泛使用的安全计算方法主要有以下三种:同

8、态加密(HE)、安全多方计算(MPC)以及零知识证明(ZKPs)。除去各自的特点,这三种方法中又以安全多方计算目前在机器学习数据加密中应用得最广泛,因为同态加密计算过慢,而机器学习又显然不是零知识证明的对标场景。  也正是因为这一点,安全多方计算在计算机科学研究中一直处于前沿位置,它的技术瓶颈在于计算效率太低,但近年来这种情况也在逐渐好转。  终极推荐系统  为了说明个性化机器学习模型

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。