欢迎来到天天文库
浏览记录
ID:28097121
大小:28.00 KB
页数:6页
时间:2018-12-08
《旷视科技联合创始人兼CTO唐文斌个人简历.doc》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库。
1、旷视科技联合创始人兼CTO唐文斌个人简历旷视科技联合创始人兼CTO唐文斌个人简历 新智元:旷视的核心优势是什么? 唐文斌:深度学习有三个核心要素,算法、数据和系统,这三者是相乘关系——你有一个好的算法,用有很多数据去催它,当数据变多、算法变复杂后,还需要有一套很好的底层架构和引擎来支撑。 从算法的角度讲,我们请来了孙剑老师,希望孙剑老师带着同学们在现有算法基础上找到新的东西。算法就像人的智商,数据就像人的见识,见识决定了你能走到多高,而智商决定了你能走多远,两件事情都非常重要。我们的研究团队其实就在智商这个方向上探索。而数据是一个更产品或者更工程的
2、事情,我们需要在产品中设计一个好的方式,形成数据的循环,让产品中的数据回来,不断加深算法的训练,让它变成更强的算法。 我们也非常重视系统的建设,我们有自己研发的MegBrain深度学习引擎和Brain++平台。如果说研究的价值在于去探索边界之外的东西,那边界之内的,比如网络结构的搜索,都应该用机器来完成。我们的产品中常常会有的定制算法的需求,很多时候大框架都差不多,数据工程师把数据整理和准备好以后,就直接用系统把各种类型的模型都尝试一遍,最后挑选出一个不错的。 新智元:你提到了数据工程师,现在旷视在数据方面投入多少?有多少人标注数据? 唐文斌:全职
3、标注的大约有300人,不算在600多人的团队里面。我们还有很多工作是外包完成。我们内部有标注的数据库是PB级别。 新智元:你曾在清华担任科协主席,也带过中国奥林匹克信息学竞赛团队,可以说你是旷视最开始的首席人才官。你认为目前人工智能人才应该有什么样的特点?旷视在选择的时候看重什么特质? 唐文斌:我觉得人才的类型是很多样的,每一种类型的人才都是人才,光会写paper的人才也是人才,虽然价值没有那么大。在现在的人工智能发展态势下,我们最需要的是复合型人才。做产品的时候会有产品经理,但人工智能场景下的产品经理需要更加复合。 我们团队最早的一位同学,员工工
4、号No.5的“卿爷”,我们现在提供给小米、VIVO人脸解锁的产品线都是他带着团队来做的,他需要有什么样的能力?第一,懂算法,不一定要懂算法具体是怎么做的,但一定要懂算法的边界在哪里——坚信这件事情一定能做到,但同时也要了解现在的算法有些东西是真的做不到。第二,有很好的工程判断力,用算法的方式是从本质去解决问题,而有些东西你会通过工程的方法去“不本质的解决”,倒推出一个一个设计。第三,也是更为重要的,需要不断从用户的需求、用户的场景、用户的价值角度出发思考问题。这样一个产品经理,他需要比以往的产品经理有更多工程上sense,更多算法上的sense。 从工
5、程师的角度来讲,我们有一个词,叫“全栈AI工程师”,我们希望这位同学不仅数学好,懂算法,编程很强,还非常懂系统;算法编程都很懂才能做引擎,懂体系结构你的引擎才能在不同的平台上都跑得很好很快。这样的人非常难找,但也是最强的。比如说我们做Brain++平台的那帮人,他们提供的是训练平台,给到研究人员使用,他们知道Research是怎么使用这些东西,他们自己也随时都能转变为Researcher。同时,他们考虑Researcher做的哪些事情是没有价值的,要把它工程化、系统化,最终的目标是消灭Researcher——所有在边界范围内的Research都由系统来完
6、成,而Research真正要做的事情是突破边界,探索边界之外的东西。 旷视在选择人才的时候也是按照这个标准。如果有这样的人,我们特别特别希望你能够加入我们,我们团队里有很多这样的人,你跟他们在一起一定会非常愉快。其次,我们也很看重学习能力,现在领域发展很快,你需要非常快速地跟上节奏去尝试你的新想法,所以学习能力和动手速度非常重要。我们也有实习生项目,总之欢迎你来,孙剑老师带你飞对吧(笑)。算法与硬件结合,从源头抓起控制成像质量 新智元:旷视的算法、软件如何与硬件相结合? 唐文斌:我们有自己的深度学习引擎MegBrain,这个引擎在不同的品牌上做了非
7、常多的底层优化,能够跑得非常快。我们最近做的一款智能相机产品,这个相机是业界第一款全帧率、全画幅(1080P)智能人像抓拍机。 全帧率的意思就是说,每秒30帧,每帧都去抓取,在业界这个指标是最高的。有的嫌疑人员有很强的反侦察意识,一看到摄像头会马上低头,如果相机不能以非常快的速度做出截取,可能只有100毫秒,一两帧之后这人就消失了。同时,每一帧都检测,也能确保总是能抓到质量最好的一帧,为后续应用服务。以往的相机在画面中抓拍做检测,基本上最多只能抓拍画面中10到20个人,再多就抓不到了,因为计算量不行。我们可以做到128张人脸,很大的人流也能跟踪得很好。
8、 我们用的是自己设计的FPGA芯片,在算法层面也做了很大升级。硬件也好,算法也
此文档下载收益归作者所有