大数据挖掘:概念与技术

大数据挖掘:概念与技术

ID:27980905

大小:27.92 KB

页数:12页

时间:2018-12-07

大数据挖掘:概念与技术_第1页
大数据挖掘:概念与技术_第2页
大数据挖掘:概念与技术_第3页
大数据挖掘:概念与技术_第4页
大数据挖掘:概念与技术_第5页
资源描述:

《大数据挖掘:概念与技术》由会员上传分享,免费在线阅读,更多相关内容在工程资料-天天文库

1、实用标准文案简介本书完整全面地讲述数据挖掘的概念、方法、技术和最新研究进展。本书对前两版做了全面修订,加强和重新组织了全书的技术内容,重点论述了数据预处理、频繁模式挖掘、分类和聚类等的内容,还全面讲述了OLAP和离群点检测,并研讨了挖掘网络、复杂数据类型以及重要应用领域。本书是数据挖掘和知识发现领域内的所有教师、研究人员、开发人员和用户都必读的参考书,是一本适用于数据分析、数据挖掘和知识发现课程的优秀教材,可以用做高年级本科生或者一年级研究生的数据挖掘导论教材。序言社会的计算机化显著地增强了我们产生和收集数

2、据的能力。大量数据从我们生活的每个角落涌出。存储的或瞬态的数据的爆炸性增长已激起对新技术和自动工具的需求,以帮助我们智能地将海量数据转换成有用的信息和知识。这导致称做数据挖掘的一个计算机科学前沿学科的产生,这是一个充满希望和欣欣向荣并具有广泛应用的学科。数据挖掘通常又称为数据中的知识发现(KDD),是自动地或方便地提取代表知识的模式;这些模式隐藏在大型数据库、数据仓库、Web、其他大量信息库或数据流中。  本书考察知识发现和数据挖掘的基本概念和技术。作为一个多学科领域,数据挖掘从多个学科汲取营养。这些学科包

3、括统计学、机器学习、模式识别、数据库技术、信息检索、网络科学、知识库系统、人工智能、高性能计算和数据可视化。我们提供发现隐藏在大型数据集中的模式的技术,关注可行性、有用性、有效性和可伸缩性问题。因此,本书不打算作为数据库系统、机器学习、统计学或其他某领域的导论,尽管我们确实提供了这些领域的必要背景材料,以便读者理解它们各自在数据挖掘中的作用。本书是对数据挖掘的全面介绍。对于计算科学的学生、应用开发人员、行业专业人员以及涉及以上列举的学科的研究人员,本书应当是有用的。  数据挖掘出现于20世纪80年代后期,2

4、0世纪90年代有了突飞猛进的发展,并可望在新千年继续繁荣。本书全面展示该领域,介绍有趣的数据挖掘技术和系统,并讨论数据挖掘的应用和研究方向。写本书的重要动机是需要建立一个学习数据挖掘的有组织的框架——由于这个快速发展领域的多学科特点,这是一项具有挑战性的任务。我们希望本书有助于具有不同背景和经验的人交换关于数据挖掘的见解,为进一步促进这个令人激动的、不断发展的领域的成长做出贡献。  本书的组织  自本书第1版、第2版出版以来,数据挖掘领域已经取得了重大进展,开发出了许多新的数据挖掘方法、系统和应用,特别是对

5、于处理包括信息网络、图、复杂结构和数据流,以及文本、Web、多媒体、时间序列、时间空间数据在内的新的数据类型。这种快速发展、新技术不断涌现使得在一本书中涵盖整个领域的广泛内容非常困难。因此,我们决定与其继续扩大本书的涵盖面,还不如让本书以足够的广度和深度涵盖该领域的核心内容,而把复杂数据类型的处理留给另一本即将面世的书。  第3版对本书的前两版做了全面修订,加强和重新组织了全书的技术内容,显著地扩充和加强处理一般数据类型挖掘的核心技术。第2版中讨论特定主题的章节(例如,数据预处理、频繁模式挖掘、分类和聚类)

6、在这一版都被扩充,每章都分成两章。对于这些主题,一章囊括基本概念和技术,而另一章提供高级概念和方法。  第2版关于复杂数据类型的章节(例如,流数据、序列数据、图结构数据、社会网络数据和多重关系数据,以及文本、Web、多媒体和时间空间数据)现在保留给专门介绍数据挖精彩文档实用标准文案掘的高级课题的新书。为了支持读者学习这些高级课题,我们把第2版的相关章节的电子版放在本书的网站上,作为第3版的配套材料。  第3版各章的简要内容如下(重点介绍新的内容):  第1章提供关于数据挖掘的多学科领域的导论。该章讨论导致需

7、要数据挖掘的数据库技术的发展历程和数据挖掘应用的重要性。该章考察挖掘的数据类型,包括关系的、事务的和数据仓库数据,以及复杂的数据类型,如时间序列、序列、数据流、时间空间数据、多媒体数据、文本数据、图、社会网络和Web数据。该章根据所挖掘的知识类型、所使用的技术以及目标应用的类型,对数据挖掘任务进行了一般分类。最后讨论该领域的主要挑战。  第2章介绍一般数据特征。该章首先讨论数据对象和属性类型,然后介绍基本统计数据描述的典型度量。该章概述各种类型数据的数据可视化技术。除了数值数据的可视化方法外,还介绍文本、标

8、签、图和多维数据的可视化方法。第2章还介绍度量各种类型数据的相似性和相异性的方法。  第3章介绍数据预处理技术。该章首先介绍数据质量的概念,然后讨论数据清理、数据集成、数据归约、数据变换和数据离散化的方法。  第4章和第5章是数据仓库、OLAP(联机分析处理)和数据立方体技术的引论。第4章介绍数据仓库和OLAP的基本概念、建模、结构、一般实现,以及数据仓库和其他数据泛化的关系。第5章更深入地考察数据立方体技术,详

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。