成功创造1nm晶体管.doc

成功创造1nm晶体管.doc

ID:27911404

大小:113.50 KB

页数:4页

时间:2018-12-07

成功创造1nm晶体管.doc_第1页
成功创造1nm晶体管.doc_第2页
成功创造1nm晶体管.doc_第3页
成功创造1nm晶体管.doc_第4页
资源描述:

《成功创造1nm晶体管.doc》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、成功创造1nm晶体管  台积电共同执行长刘德音之前透露,目前已组成团队着手3纳米研发,业界一片惊奇,而且现在不只3纳米,1纳米也来了!隶属美国能源部的劳伦斯伯克利国家实验室AliJavey团队即宣称,突破了物理极限,成功创造1纳米晶体管。  美国劳伦斯伯克力国家实验室LawrenceBerkeleyNaTIonalLaboratorywww.lbl.gov)(简称伯克利国家实验室)宣布实现全球最小的晶体管!该实验室利用二维材料技术用二硫化钼、碳纳米管和二氧化绝缘体锆实现了栅极长度1nm的晶体管。该成功公布在最新一期《科学》杂志上。  劳伦斯伯克利国家实验室是一个隶属于美国能源部的国家

2、实验室,从事非绝密级的科学研究。它坐落在加州大学伯克利分校的中心校园内,位于伯克利山的山顶。该实验室现由美国能源部委托加州大学代为管理。  在集成电路领域,特征尺寸是指半导体器件中的最小尺寸。在CMOS工艺中,特征尺寸典型代表为“栅”的宽度,也即MOS器件的沟道长度。一般来说,特征尺寸越小,芯片的集成度越高,性能越好,功耗越低。      纳米制程是什么?  在数学上,纳米是0.000000001公尺,但这是个相当差的例子,毕竟我们只看得到小数点后有很多个零,却没有实际的感觉。如果以指甲厚度做比较的话,或许会比较明显。  用尺规实际测量的话可以得知指甲的厚度约为0.0001公尺(0.

3、1毫米),也就是说试着把一片指甲的侧面切成10万条线,每条线就约等同于1纳米,由此可略为想像得到1纳米是何等的微小了。  知道纳米有多小之后,还要理解缩小制程的用意,缩小电晶体的最主要目的,就是可以在更小的芯片中塞入更多的电晶体,让芯片不会因技术提升而变得更大;其次,可以增加处理器的运算效率;再者,减少体积也可以降低耗电量;最后,芯片体积缩小后,更容易塞入行动装置中,满足未来轻薄化的需求。  再回来探究纳米制程是什么,以14纳米为例,其制程是指在芯片中,线最小可以做到14纳米的尺寸,传统电晶体的长相,以此作为例子。缩小电晶体的最主要目的就是为了要减少耗电量,然而要缩小哪个部分才能达到

4、这个目的?藉由缩小闸极长度,电流可以用更短的路径从Drain端到Source端(有兴趣的话可以利用Google以MOSFET搜寻,会有更详细的解释)。    突破物理材料限制  不过,制程并不能无限制的缩小,当我们将电晶体缩小到20纳米左右时,就会遇到量子物理中的问题,让电晶体有漏电的现象,抵销缩小L时获得的效益。作为改善方式,就是导入FinFET(Tri-Gate)这个概念,在Intel以前所做的解释中,可以知道藉由导入这个技术,能减少因物理现象所导致的漏电现象。  更重要的是,藉由这个方法可以增加Gate端和下层的接触面积。在传统的做法中,接触面只有一个平面,但是采用FinFET

5、(Tri-Gate)这个技术后,接触面将变成立体,可以轻易的增加接触面积,这样就可以在保持一样的接触面积下让Source-Drain端变得更小,对缩小尺寸有相当大的帮助。    首席研究员阿里Javey表示我们展示了1nm栅晶体管,显示只要有合适的材料,还是有很多空间可以压缩现有产品尺寸的。  我们都知道沟道长度缩小也会带来一系列负面效应,统称为“短沟道效应”。例如在沟道短到一定程度时,源与漏之间会存在漏电流,即使撤掉了栅极电压,也可能关不断MOS管,漏电流的存在会使电路的静态功耗增大,为了降低“短沟道效应”带来的负面影响,需要在器件结构、制造工艺等方面进行改进。  研究人员表示某些

6、二维材料,包括二硫化钼,具有比硅更小的介电常数、更大的带隙和更大的载流子有效质量。

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。