欢迎来到天天文库
浏览记录
ID:27867916
大小:1.51 MB
页数:125页
时间:2018-12-04
《《spss的相关分析》ppt课件》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、第7章SPSS的相关分析7.1相关分析概述7.1.1相关的基本概念1.函数关系和相关关系函数关系是指事物或现象之间存在着严格的依存关系,其主要特征是它的确定性,即对一个变量的每一个值,另一个变量都具有惟一确定的值与之相对应。变量之间的函数关系通常可以用函数式Y=f(x)确切地表示出来。例如,圆的周长C对于半径r的依存关系就是函数关系:C=2πr。相关关系反映出变量之间虽然相互影响,具有依存关系,但彼此之间是不能一一对应的。例如,学生成绩与其智力因素、各科学习成绩之间的关系、教育投资额与经济发展水平的关系、社会环境与人民健康的关系等等,都反映出客观现象中存在的相关关系。7.1相关
2、分析概述2.相关关系的类型(1)根据相关程度的不同,相关关系可分为完全相关、不完全相关和无相关。(2)根据变量值变动方向的趋势,相关关系可分为正相关和负相关。(3)根据变量关系的形态,相关关系可分为直线相关和曲线相关。(4)根据研究变量的多少,可分为单相关、复相关。7.1.2相关分析1.相关分析的作用(1)判断变量之间有无联系(2)确定选择相关关系的表现形式及相关分析方法(3)把握相关关系的方向与密切程度(4)相关分析不但可以描述变量之间的关系状况,而且用来进行预测。(5)相关分析还可以用来评价测量量具的信度、效度以及项目的区分度等。7.1.2相关分析相关系数是在直线相关条件下
3、,说明两个变量之间相关程度以及相关方向的统计分析指标。相关系数一般可以通过计算得到。作为样本相关系数,常用字母r表示;作为总体相关系数,常用字母ρ表示。相关系数的数值范围是介于–1与+1之间(即–1≤r≤1),常用小数形式表示,一般要取小数点后两位数字来表示,以便比较精确地描述其相关程度。两个变量之间的相关程度用相关系数r的绝对值表示,其绝对值越接近1,表明两个变量的相关程度越高;其绝对值越接近于0,表明两个变量相关程度越低。如果其绝对值等于零1,则表示两个变量完全直线相关。如果其绝对值为零,则表示两个变量完全不相关(不是直线相关)。2.相关系数7.1.2相关分析变量相关的方向
4、通过相关系数r所具有的符号来表示,“+”号表示正相关,即0≤r≤1。“﹣”表示负相关,即0≥r≥﹣1。在使用相关系数时应该注意下面的几个问题。(1)相关系数只是一个比率值,并不具备与相关变量相同的测量单位。(2)相关系数r受变量取值区间大小及样本数目多少的影响比较大。(3)来自于不同群体且不同质的事物的相关系数不能进行比较。(4)对于不同类型的数据,计算相关系数的方法也不相同。3.相关系数7.2SPSS在简单相关分析中的应用简单相关分析是研究两个变量之间关联程度的统计方法。它主要是通过计算简单相关系数来反映变量之间关系的强弱。一般它有图形和数值两种表示方式。1、相关图在统计中制
5、作相关图,可以直观地判断事物现象之间大致上呈现何种关系的形式。相关图是相关分析的重要方法。利用直角坐标系第一象限,把第一个变量置于横轴上,第二个变量置于纵轴上,而将两个变量对应的变量值用坐标点形式描绘出来,用以表明相关点分布状况的图形,这就是相关图7.2.1简单相关分析的基本原理7.2SPSS在简单相关分析中的应用2、相关系数虽然相关图能够展现变量之间的数量关系,但这也只是种直观判断方法。因此,可以计算变量之间的相关系数。对不同类型的变量应当采取不同的相关系数来度量,常用的相关系数主要有:皮尔逊(Pearson)相关系数常称为积差相关系数,适用于研究连续变量之间的相关程度。例如
6、,收入和储蓄存款、身高和体重等变量间的线性相关关系。注意Pearson相关系数适用于线性相关的情形,对于曲线相关等更为复杂的情形,系数的大小并不能代表其相关性的强弱。它的计算公式为:利用相关系数r的大小可以判断变量间相关关系的密切程度,具体见表所示。7.2SPSS在简单相关分析中的应用7.2.1简单相关分析的基本原理7.2SPSS在简单相关分析中的应用对Pearson简单相关系数的统计检验是计算t统计量,t统计量服从n-2个自由度的t分布。SPSS会自动计算r统计量和t值,并依据t分布表给出其对应的相伴概率值。Spearman等级相关系数用来度量顺序水准变量间的线性相关关系。它
7、是利用两变量的秩次大小作线性相关分析,适用条件为:①两个变量的变量值是以等级次序表示的资料;②一个变量的变量值是等级数据,另一个变量的变量值是等距或比率数据,且其两总体不要求是正态分布,样本容量n不一定大于30。7.2SPSS在简单相关分析中的应用从斯皮尔曼等级相关适用条件中可以看出,等级相关的应用范围要比积差相关广泛,它的突出优点是对数据的总体分布、样本大小都不做要求。但缺点是计算精度不高。斯皮尔曼等级相关系数常用符号来表示。其基本公式为:式中:D是两个变量每对数据等级之差,n是两列变量值
此文档下载收益归作者所有