1心电数据采集器的硬件设计

1心电数据采集器的硬件设计

ID:27866089

大小:108.00 KB

页数:5页

时间:2018-12-06

1心电数据采集器的硬件设计_第1页
1心电数据采集器的硬件设计_第2页
1心电数据采集器的硬件设计_第3页
1心电数据采集器的硬件设计_第4页
1心电数据采集器的硬件设计_第5页
资源描述:

《1心电数据采集器的硬件设计》由会员上传分享,免费在线阅读,更多相关内容在工程资料-天天文库

1、1心电数据采集器的硬件设计   1.1基本硬件结构   心电数据采集器的整个电路主要包括心电信号放大电路、模数转换器、外接实时时钟、单片机、程序存储器、数据存储器、与IBMPC的并行通讯接口等。其基本原结构如图1所示。   采集器采集的信号为双通道心电信号。大容量数据存储器扩展采用端口扩展译码。关于输入过载保护、采样、A/D转换、与IBM PC并行通讯、外接实时时钟等问题已有相当多的文献作了介绍,本文不再详述。下面主要就心电信号的专用放大电路和心电数据采集系统的动态校零技术进行论述。   1.2输入信号放大电路   该心电数据采集器的二组差动输入信号是通过电极取自

2、人体表皮的缓变微弱信号,其值不超过5mV。我们采用二级放大器构成放大电路,其结构如图2所示。   第一级由A1、A2和A3组成同相并联差动运算放大电路。为了取得最佳的低频响应,必须将该级的输入端直接耦合到电极上,因此我们将该级的增益设计得较低,以减小该级的输入偏流,避免使电极极化产生高压。A1、A2组成同相差动带增益的电压跟随器,大大提高了电路的输入阻抗,它对共模信号有很高的抑制比,对差模信号的放大倍数为:    A3为一独立的差动式放大器,调节Rf可使电阻对称,减小误差,进一步提高共模抑制比。通过计算可得第一级的综合放大倍数为   第二级由A4形成同相比例放

3、大电路,其放大倍数为32。   二级放大总的增益为800。由于心电信号的频率范围要求放大器具有0.04~150Hz的带宽,所以利用第二级放大器A4,通过C1和C2组成了有源带通滤波电路,以抑制干扰。   放大电路中另一个值得注意的问题是当异联电极换接时,由于C1的作用可能会引起放大器的输出饱和。因此在电路中加入电子开关So,当放大器输出饱和时,通过比较器自动驱动So瞬时接通,C1迅速充电,从而使输出脱离饱和状态。   在该放大电路的设计中,虽然可使用常规低偏流运放,但从实际出发,我们优先选用单电源运放,如F3140。由于其输入级差分电路采用了PMOS器件,使它的输

4、入电阻可高达1.5兆欧,具有极低的输入失调电流、电压,并且可省去调零电路和外接偏置电阻,使整个放大电路变得更为紧凑,调试更为方便,也降低了功耗。   1.3心电数据采集器的动态校零   输入级电路虽然采用了具有补偿及自动调零的运放电路,但并不能完全克服放大器的零点漂移。当设备连续工作时其影响尤为明显。因此,在心电数据采集的硬件设计时,我们还采用了动态校零技术,取得了良好的效果。使用该技术,在硬件电路上只需作简单的改动,即用两个同步工作的模拟电子开关,如AH5012连接在输入端与放大器之间,如图3所示。   以A通道为例,每次正式采样前,先由CPU发出校零控制信号,

5、使S1断开,S2接通。接着读入“零”位信号得Vo并将其存入零位值寄存单元。然后复位校零控制信号,即使S1接通,S2断开,采样读入迭加了“零”位信号的心电信号数据VAO显然实际的信号采样值即为:                         (4)   对于模拟电子开关导通电阻引起的“零”位读数偏差,由于它是一个稳定的常量,可以通过实验分析,由软件编程进一步予以消除。    2系统应用软件设计    2.1软件总体结构   整个心电数据采集器的软件采用模块化结构,以便于维护和扩充。该软件主要包括初始化、动态校零、采样、并行通讯管理、WDT等常规模块,还包括心电

6、信号数据预处理的专用滤波软件模块,如50Hz交流干扰滤波及漂移滤波等。系统程序流程图如图4所示。   2.2交流干扰滤波算法   考虑到采集器携带者可能接触的环境因素,在采集到的心电信号数据中必然会存在一定的50Hz工频干扰信号。鉴于心电信号的频谱主要在0.5~100Hz范围内,因此不能采用常规的平均滤波或点阻滤波算法。为此,我们选用了适用于心电信号数据的“增量预估”滤波算法。此算法主要原理是通过三角恒等式和一些采样数据,估算出正弦波出现的幅值,经过计算判断该交流信号是否存在于采样信号中,如有则减去,使实际心电图信号保存下来。显然,正确预估50Hz正弦信号的幅值是

7、整个算法的关键。其主要依据是利用三角恒等式:      可以认为δ表示工频正弦干扰信号在一个采样周期内的相位变化。由式5可从两次采样(相位为θ和(θ-δ)的干扰幅值预估出下一次采样时(相位为(θ+δ)的正弦波干扰信号幅值。将式5乘以振幅可得50Hz   工频干扰的差分方程:      式中DK为交流干扰幅值序列,T为采样周期。  为了在递推算法中不断修正预估值与实际干扰值的偏差,我们作误差估计函数       式中,AK为可能包含交流干扰的实际采样值。由于在两次采样间隔内,Ak与AK-1是十分接近的,从而由式7可知,在算法的初始阶段如果DK估计过大,则F趋于较大

8、的负值;反

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。