关于主流深度学习芯片的优缺点分析.doc

关于主流深度学习芯片的优缺点分析.doc

ID:27853514

大小:48.50 KB

页数:5页

时间:2018-12-06

关于主流深度学习芯片的优缺点分析.doc_第1页
关于主流深度学习芯片的优缺点分析.doc_第2页
关于主流深度学习芯片的优缺点分析.doc_第3页
关于主流深度学习芯片的优缺点分析.doc_第4页
关于主流深度学习芯片的优缺点分析.doc_第5页
资源描述:

《关于主流深度学习芯片的优缺点分析.doc》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、关于主流深度学习芯片的优缺点分析  深度学习全称深度神经网络,本质上是多层次的人工神经网络算法,即模仿人脑的神经网络,从最基本的单元上模拟了人类大脑的运行机制。近年来,其所取得的前所未有的突破掀起了人工智能新一轮的发展热潮。  最早的神经网络的思想起源于1943年的MCP人工神经元模型,当时是希望能够用计算机来模拟人的神经元反应的过程,但直到最近,它才真正让人工智能火起来。主要原因在于:算法的突破、数据量的激增和计算机能力/成本的下降。其中计算能力的提升的作为人工智能实现的物理基础,对人工智能发展的意义不言而喻。  本文我们就来分析目前主流的深度学习芯片的优缺点。  关

2、于主流深度学习芯片的优缺点分析  深度学习全称深度神经网络,本质上是多层次的人工神经网络算法,即模仿人脑的神经网络,从最基本的单元上模拟了人类大脑的运行机制。近年来,其所取得的前所未有的突破掀起了人工智能新一轮的发展热潮。  最早的神经网络的思想起源于1943年的MCP人工神经元模型,当时是希望能够用计算机来模拟人的神经元反应的过程,但直到最近,它才真正让人工智能火起来。主要原因在于:算法的突破、数据量的激增和计算机能力/成本的下降。其中计算能力的提升的作为人工智能实现的物理基础,对人工智能发展的意义不言而喻。  本文我们就来分析目前主流的深度学习芯片的优缺点。  CP

3、U不适合深度学习  深度学习与传统计算模式最大的区别就是不需要编程,它是从输入的大量数据中自发地总结出规律,而传统计算模式更多都需要人为提取所需解决问题的特征或者总结规律来进行编程。也正因为如此,深度学习对计算能力要求非常高,以至于有人将深度学习称之为“暴力计算”。  因此,传统的CPU并不适用于深度学习。  从内部结构上来看,CPU中70%晶体管都是用来构建Cache(高速缓冲存储器)和一部分控制单元,负责逻辑运算的部分(ALU模块)并不多。控制单元等模块的存在都是为了保证指令能够一条接一条的有序执行。  这种通用性结构对于传统的编程计算模式非常适合,但对于并不需要太

4、多的程序指令,却需要海量数据运算的深度学习的计算需求,这种结构就显得有心无力了。GPU,深度学习主流芯片  与CPU少量的逻辑运算单元相比,GPU整个就是一个庞大的计算矩阵,GPU具有数以千计的计算核心、可实现10-100倍应用吞吐量,而且它还支持对深度学习至关重要的并行计算能力,可以比传统处理器更加快速,大大加快了训练过程。GPU是目前最普遍采用的深度学习运算单元之一。  目前,谷歌、Facebook、微软、Twitter和百度等互联网巨头,都在使用GPU作为其深度学习载体,让服务器学习海量的照片、视频、声音文档,以及社交媒体上的信息,来改善搜索和自动化照片标记等各种

5、各样的软件功能。而某些汽车制造商也在利用这项技术开发无人驾驶汽车。  不过,由于GPU的设计初衷是为了应对图像处理中需要大规模并行计算。因此,根据乐晴智库介绍,其在应用于深度学习算法时有数个方面的局限性:  第一,应用过程中无法充分发挥并行计算优势。深度学习包含训练和应用两个计算环节,GPU在深度学习算法训练上非常高效,但在应用时一次性只能对于一张输入图像进行处理,并行度的优势不能完全发挥。  第二,硬件结构固定不具备可编程性。深度学习算法还未完全稳定,若深度学习算法发生大的变化,GPU无法灵活的配置硬件结构。  另外,在能耗上面,虽然GPU要好于CPU,但其能耗仍旧很

6、大。备受看好的FPGA  FPGA,即现场可编辑门阵列,是一种新型的可编程逻辑器件,由于其具有静态可重复编程和动态在系统重构的特性,使得硬件的功能可以像软件一样通过编程来修改。  FPGA作为人工智能深度学习方面的计算工具,主要原因就在于其本身特性:可编程专用性,高性能,低功耗。  北京大学与加州大学的一个关于FPGA加速深度学习算法的合作研究。展示了FPGA与CPU在执行深度学习算法时的耗时对比。在运行一次迭代时,使用CPU耗时375毫秒,而使用FPGA只耗时21毫秒,取得了18倍左右的加速比。  根据瑞士苏黎世联邦理工学院(ETHZurich)研究发现,基于FPGA

7、的应用加速比CPU/GPU方案,单位功耗性能可提升25倍,而时延则缩短了50到75倍,与此同时还能实现出色的I/O集成。而微软的研究也表明,FPGA的单位功耗性能是GPU的10倍以上,由多个FPGA组成的集群能达到GPU的图像处理能力并保持低功耗的特点。  根据英特尔预计,到2020年,将有1/3的云数据中心节点采用FPGA技术。不可估量的ASIC  ASIC(ApplicationSpecificIntegratedCircuits,专用集成电路),是指应特定用户要求或特定电子系统的需要而设计、制造的集成电路。ASIC用于专门的任务,比

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。