三位大神Hinton、Yann LeCun和Bengio分析入门深度学习.doc

三位大神Hinton、Yann LeCun和Bengio分析入门深度学习.doc

ID:27822185

大小:226.50 KB

页数:14页

时间:2018-12-06

三位大神Hinton、Yann LeCun和Bengio分析入门深度学习.doc_第1页
三位大神Hinton、Yann LeCun和Bengio分析入门深度学习.doc_第2页
三位大神Hinton、Yann LeCun和Bengio分析入门深度学习.doc_第3页
三位大神Hinton、Yann LeCun和Bengio分析入门深度学习.doc_第4页
三位大神Hinton、Yann LeCun和Bengio分析入门深度学习.doc_第5页
资源描述:

《三位大神Hinton、Yann LeCun和Bengio分析入门深度学习.doc》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、三位大神Hinton、YannLeCun和Bengio分析入门深度学习  本文上半部分深入浅出介绍深度学习的基本原理和核心优势,下半部分则详解CNN、分布式特征表示、RNN及其不同的应用,并对深度学习技术的未来发展进行展望。  三位大神Hinton、YannLeCun和Bengio分析入门深度学习  本文上半部分深入浅出介绍深度学习的基本原理和核心优势,下半部分则详解CNN、分布式特征表示、RNN及其不同的应用,并对深度学习技术的未来发展进行展望。  三位大神Hinton、YannLeCun和Bengio分析入门深度学习  

2、本文上半部分深入浅出介绍深度学习的基本原理和核心优势,下半部分则详解CNN、分布式特征表示、RNN及其不同的应用,并对深度学习技术的未来发展进行展望。  三位大神Hinton、YannLeCun和Bengio分析入门深度学习  本文上半部分深入浅出介绍深度学习的基本原理和核心优势,下半部分则详解CNN、分布式特征表示、RNN及其不同的应用,并对深度学习技术的未来发展进行展望。  三位大神Hinton、YannLeCun和Bengio分析入门深度学习  本文上半部分深入浅出介绍深度学习的基本原理和核心优势,下半部分则详解CNN

3、、分布式特征表示、RNN及其不同的应用,并对深度学习技术的未来发展进行展望。  三位大神Hinton、YannLeCun和Bengio分析入门深度学习  本文上半部分深入浅出介绍深度学习的基本原理和核心优势,下半部分则详解CNN、分布式特征表示、RNN及其不同的应用,并对深度学习技术的未来发展进行展望。  三位大神Hinton、YannLeCun和Bengio分析入门深度学习  本文上半部分深入浅出介绍深度学习的基本原理和核心优势,下半部分则详解CNN、分布式特征表示、RNN及其不同的应用,并对深度学习技术的未来发展进行展望

4、。    论文摘要  深度学习可以让那些拥有多个处理层的计算模型来学习具有多层次抽象的数据的表示。这些方法在许多方面都带来了显著的改善,包括最先进的语音识别、视觉对象识别、对象检测和许多其它领域,例如药物发现和基因组学等。深度学习能够发现大数据中的复杂结构。它是利用BP算法来完成这个发现过程的。BP算法能够指导机器如何从前一层获取误差而改变本层的内部参数,这些内部参数可以用于计算表示。深度卷积网络在处理图像、视频、语音和音频方面带来了突破,而递归网络在处理序列数据,比如文本和演讲方面表现出了闪亮的一面。  机器学习技术在现代

5、社会的各个方面表现出了强大的功能:从Web搜索到社会网络内容过滤,再到电子商务网站上的商品推荐都有涉足。并且它越来越多地出现在消费品中,比如相机和智能手机。  机器学习系统被用来识别图片中的目标,将语音转换成文本,匹配新闻元素,根据用户兴趣提供职位或产品,选择相关的搜索结果。逐渐地,这些应用使用一种叫深度学习的技术。传统的机器学习技术在处理未加工过的数据时,体现出来的能力是有限的。  几十年来,想要构建一个模式识别系统或者机器学习系统,需要一个精致的引擎和相当专业的知识来设计一个特征提取器,把原始数据(如图像的像素值)转换成

6、一个适当的内部特征表示或特征向量,子学习系统,通常是一个分类器,对输入的样本进行检测或分类。特征表示学习是一套给机器灌入原始数据,然后能自动发现需要进行检测和分类的表达的方法。  深度学习就是一种特征学习方法,把原始数据通过一些简单的但是非线性的模型转变成为更高层次的,更加抽象的表达。通过足够多的转换的组合,非常复杂的函数也可以被学习。  对于分类任务,高层次的表达能够强化输入数据的区分能力方面,同时削弱不相关因素。比如,一副图像的原始格式是一个像素数组,那么在第一层上的学习特征表达通常指的是在图像的特定位置和方向上有没有边

7、的存在。第二层通常会根据那些边的某些排放而来检测图案,这时候会忽略掉一些边上的一些小的干扰。第三层或许会把那些图案进行组合,从而使其对应于熟悉目标的某部分。随后的一些层会将这些部分再组合,从而构成待检测目标。  深度学习的核心方面是,上述各层的特征都不是利用人工工程来设计的,而是使用一种通用的学习过程从数据中学到的。  深度学习正在取得重大进展,解决了人工智能界的尽最大努力很多年仍没有进展的问题。它已经被证明,它能够擅长发现高维数据中的复杂结构,因此它能够被应用于科学、商业和政府等领域。除了在图像识别、语音识别等领域打破了纪

8、录,它还在另外的领域击败了其他机器学习技术,包括预测潜在的药物分子的活性、分析粒子加速器数据、重建大脑回路、预测在非编码DNA突变对基因表达和疾病的影响。  也许更令人惊讶的是,深度学习在自然语言理解的各项任务中产生了非常可喜的成果,特别是主题分类、情感分析、自动问答和语言翻译。我们认为,

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。