人教b版选修2-3高中数学32《回归分析》同步练习高三数学试题试卷

人教b版选修2-3高中数学32《回归分析》同步练习高三数学试题试卷

ID:27794806

大小:107.41 KB

页数:6页

时间:2018-12-06

人教b版选修2-3高中数学32《回归分析》同步练习高三数学试题试卷_第1页
人教b版选修2-3高中数学32《回归分析》同步练习高三数学试题试卷_第2页
人教b版选修2-3高中数学32《回归分析》同步练习高三数学试题试卷_第3页
人教b版选修2-3高中数学32《回归分析》同步练习高三数学试题试卷_第4页
人教b版选修2-3高中数学32《回归分析》同步练习高三数学试题试卷_第5页
资源描述:

《人教b版选修2-3高中数学32《回归分析》同步练习高三数学试题试卷》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、《回归分析》复习问答一、【问】回归分析是对具有相关关系的两个变量进行统计分析的一种常用方法.相关关系又分线性相关关系和非线性相关关系,如何利用回归分析的方法对两个具有线性相关关系的变量进行研究呢?【答】利用回归分析的方法对两个具有线性相关关系的变量进行研究的步骤为:①画出两个变量的散点图;②求冋归直线方程;③用冋归直线方程进行预报.其屮求冋归直线方程是关键.而对于线性回归模型y=bx+a來说,估计模型中的未知参数臼和力的最好方法就是用最小二乘估计吕__总——和,其计算公式为b==年,a=y-bx.工(兀一兀)2工彳一;=1i=l例1某

2、地10户家庭的年收入和年饮食支出的统计资料如下表:年收入兀(万元)680年饮食支出y(万元).9.4.6.0.11.9.8・12.2.3(1)根据表中数据,确定家庭的年收入和年饮食支出的相关关系;(2)如果某家庭年收入为9万元,预测其年饮食支出.解析:(1)由题意知,年收入/为解释变量,年饮食支出y为预报变量,作散点图(如图所示).从图中可以看出,样木点呈条状分布,年收入和年饮食支出有比较好的线性相关关系,因此可以用线性回归方程刻画它们之间的关系.__10;x=6,y=1.83,工#=406,1010工£=35.13,工兀’=117.

3、7,1=1/=!・・・&=0.172.2=$一成=1.83-0」72x6=0.798.从而得到冋归直线方程为$=0.172x+0.798.(2)$=0.172x0.798=2.346万元.y,4-3-2-?:•・■1-•°12345678910x点评:①&=0.172是斜率的估计值,说明年收入"每增加一万元,年饮食支出y就增加0.172万元,这表明了年饮食支出与年收入具有正的线性相关关系.②对于该家庭年收入为9万元,由回归方程得到的年饮食支出的预报值2.346万元,并不能说该家庭的年饮食支出一定是2.346万元.一般说来,不能期望回归

4、方程得到的预报值就是预报变量的精确值.事实•上,它是预报变量的可能取值的平均值.二、【问】上面说到,判断解释变量*•与预报变:By是否具有线性相关关系,先作出散点图,从点的分布特征来判定是否线性相关.那么,如果作图不准,出现误差怎么办?怎样更好地判定两个变量相关关系的强弱?【答】作相关性检验,通过作散点图,并观察所给的数据列成的点是否在一条直线的附近来判定,这样做既直观又方便,因而对解决相关性检验问题比较常用,但在作图屮,由于存在误差,有时很难说这些点是不是分布在一条直线的附近,这时就很难判断两个变量之间是否具有相关关系.因此给定样本

5、数据(引)0(/=1,2,.-,/?),单纯由散点图判定其是否人致在-•条直线附近主观性太强,回归分析时还通常用相关系数F来检验两个变量之间线性相关关系的强弱.样本相关系工(兀一兀)(开一刃数的具体计算公式为:表明网个变量的线性相关I”口”•厂的绝对值越接近£(兀-对吃(%-)丁Vf=ij=i性越强;/的绝对值接近于0时,表明两个变量之间几乎不存在线性相关关系.通常当L人于0.75时,认为两个变量有很强的线性相关关系.例2为了了解某地母亲身高x与女儿身高y的相关关系,现随机测得10对母女的身高,所得数据如卞表所示:母亲身高X(cm)

6、59606063595459585957女儿身高y(cm)58596061615562576256试对;v与y进行冋归分析,并预报当母亲疗高为161cm时,.女儿的身高为多少?解析:作线性相关性检验,匚=158.8,$=159」,^xf2-10x2=(1592+1602+…+1572)—10x158.*=47.6,工兀』一10心=37.2,J;/-10/=56.9.因此心0.71.表明x与y有线性相关关系,因而求冋归直线方程有必要.又鼻0.78,a=159」-0.78x158.8=35.2.由此可得回归直线方程为9=0.78x4-35

7、.2.斜率的估计值&=0.78反映出当母亲身高每增加lcm时,女儿身高平均增加0.78cm,2=35.2可以理解为女儿身高中不受母亲身高影响的部分.当母亲身高为x=161cm时,预报女儿身高为9=0.78x161+35.2=160.78-161cm,这就是说当母亲身高为161cm时,女儿身高大致也为161cm.点评:本题是一个回归分析类问题.解决这一问题,首先应对问题进行必要的相关性检验,如果/与y之间具有线性相关关系,再求岀对应的冋归直线的方程,最后利用回归直线方程由解释变量/的值得到预报变量y的值.注意:如果不先作相关性检验,我们

8、虽然也可以求出/与y的回归直线方程,但这时的回归直线方程也许没有任何实际价值,它也就不能反映变量x与y之间的变化规律,只有在x与y之间具有相关关系时,求回归直线方程才具有实际意义.三、【问】如何比较两个不同冋归模型的拟合

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。