三维点云数据处理的技术研究

三维点云数据处理的技术研究

ID:27581036

大小:74.12 KB

页数:7页

时间:2018-12-04

三维点云数据处理的技术研究_第1页
三维点云数据处理的技术研究_第2页
三维点云数据处理的技术研究_第3页
三维点云数据处理的技术研究_第4页
三维点云数据处理的技术研究_第5页
资源描述:

《三维点云数据处理的技术研究》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、三维点云数据处理的技术研究【摘要】本文分析了大数据领域的现状、数据点云处理技术的方法,希望能够对数据的技术应用提供一些参考。【关键词】大数据;云数据处理;应用中图分类号:C35文献标识码:A一、前言随着计算机技术的发展,三维点云数据技术得到广泛的应用。但是,受到设备的影响,数据获得存在一些问题。二、大数据领域现状数据就像货币、黄金以及矿藏一样,已经成为一种新的资产类别,大数据战略也已上升为一种国家意志,大数据的运用与服务能力已成为国家综合国力的重要组成部分。当大数据纳入到很多国家的战略层面时,其对于业界发展的影响那是不言而喻的。国家层面上,发迗国家已经启动了大数据布局。2012年3月,美

2、国政府发布《大数据研究和发展倡议》,把应对大数据技术革命带来的机遇和挑战提高到国家战略层面,投资2亿美元发展大数据,用以强化国土安全、转变教育学习模式、加速科学和工程领域的创新速度和水平;2012年7月,日本提出以电子政府、电子医疗、防灾等为中心制定新ICT(信息通讯技术)战略,发布“新ICT计划”,重点关注大数据研究和应用;2013年1月,英国政府宣布将在对地观测、医疗卫生等大数据和节能计算技术方投资1.89亿英镑。同时,欧盟也启动“未来投资计划”,总投资3500亿欧元推动大数据等尖端技术领域创新。市场层面上,美通社发布的《大数据市场:2012至2018年全球形势、发展趋势、产业分析、

3、规模、份额和预测》报告指出,2012年全球大数据市场产值为63亿美元,预计2018年该产值将达483亿。国际企业巨头们纷纷嗅到了“大数据时代”的商机,传统数据分析企业天睿公司(Teradata)、赛仕软件(SAS)、海波龙(Hy-perion)、思爱普(SAP)等在大数据技术或市场方面都占有一席之地;谷歌(Google)、脸谱(Facebook)、亚马逊(Amazon)等大数据资源企业优势显现;IBM、甲骨文(Oracle)、微软(Microsoft)、英特尔(Intel)、EMC、SYBASE等企业陆续推出大数据产品和方案抢占市场,比如IBM公司就先后收购了SPSS、发布了IBMCog

4、nosExpress和InfoSphereBiginsights数据分析平台,甲骨文公司的OracleNoSQL数据库,微软公司WindowsAzure上的HDInsight大数据解决方案,EMC公司的GreenplumUAP(UnifiedAnalyticsPlat-form)大数据引擎等等。在中国,政府和科研机构均开始高度关注大数据。工信部发布的物联网“十二五”规划上,把信息处理技术作为四项关键技术创新工程之一提出,其中包括了海量数据存储、数据挖掘、图像视频智能分析,这都是大数据的重要组成部分,而另外三项:信息感知技术、信息传输技术、信息安全技术,也都与大数据密切相关;2012年12

5、月,国家发改委把数据分析软件开发和服务列入专项指南;2013年科技部将大数据列入973基础研究计划;2013年度国家自然基金指南中,管理学部、信息学部和数理学部都将大数据列入其中。2012年12月,广东省启了《广东省实施大数据战略工作方案》;北京成立“中关村大数据产业联盟”;此外,中国科学院、清华大学、复旦大学、北京航空航天大学、华东师范大学等相继成立了近十个从事数据科学研究的专门机构。中国互联网数据中心(IDC)对中国大数据技术和服务市场2012-2016年的预测与分析指出:该市场规模将会从2011年的7760万美元增长到2016年的6。17亿美元,未来5年的复合增长率迗51.4%,市

6、场规模增长近7倍。数据价值链和产业链初显端倪,阿里巴巴、百度、腾讯、华为、大智慧等数据资源型和研发应用型企业初步涌现,并引领着数据产业的发展。2010年4月,淘宝推出“数据魔方”应用,开展基于淘宝网交易数据的分析和挖掘。2012年,华为公司推出了大数据解决方案和大数据存储产品。大数据领域的研究最早集中于大数据处理技术的发随着数据量发展到PB、EB级甚至更大,客观上要求能够更快地处理分析。大数据专用计算机、分布式计算机集群、多类型多来源数据的处理和分析、数据网络等复杂结构数据的分析、秒级时间分析等通用技术以及各种面向领域的应用技术成为大数据发展的驱动力。三、三维点云数据处理流程三维点云数据

7、处理的关键技术主要包括冗余数据的删除、孤立点检测与滤除、数据平滑、点云数据精简、多视拼接、特征识别、区域分割、几何估算、模型重建等,处理流程图如图1所示。1点云数据处理流程1只是点云数据处理的一般流程,针对不同的点云数据以及不同的需求可以选择性的调整相关的处理顺序或只选择其中的某些步骤进行数据处理。由图1可知三维点云数据的孤立点自动检测、数据平滑、多视拼接不仅是三维点云数据处理的关键技术,也是后续处理技术的的基础。四、大型水轮机叶片

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。