cmos+忆阻器实现高效分布式处理兼存储功能的传感器架构.doc

cmos+忆阻器实现高效分布式处理兼存储功能的传感器架构.doc

ID:27469151

大小:440.00 KB

页数:10页

时间:2018-12-04

cmos+忆阻器实现高效分布式处理兼存储功能的传感器架构.doc_第1页
cmos+忆阻器实现高效分布式处理兼存储功能的传感器架构.doc_第2页
cmos+忆阻器实现高效分布式处理兼存储功能的传感器架构.doc_第3页
cmos+忆阻器实现高效分布式处理兼存储功能的传感器架构.doc_第4页
cmos+忆阻器实现高效分布式处理兼存储功能的传感器架构.doc_第5页
资源描述:

《cmos+忆阻器实现高效分布式处理兼存储功能的传感器架构.doc》由会员上传分享,免费在线阅读,更多相关内容在应用文档-天天文库

1、cmos+忆阻器实现高效分布式处理兼存储功能的传感器架构  1.前言  过去的几十年,业界围绕cmos架构视觉传感器理论进行了大量广泛的研究和探讨,旨在于在成像早期阶段处理图像,从场景中提取最重要的特征,如果换作其它方式达到同样目的,例如,使用普通计算技术,则需要为此花费昂贵的成本。在这个方面,运动侦测是最重要的图像特征之一,是多个复杂视觉任务的基础。本文重点介绍时间对比概念,这个概念在很多应用中特别重要,包括交通监控、人体运动拍照和视频监视。这些应用要求图像侦测精确并可靠,形状侦测准确,变化反应及时。此外,运动检测还必须灵活地适应不同的工作场景和光强条件。背景提取是目前最被认可的运动侦测方

2、法。背景提取就是生成一个背景估算值,然后逐帧更新。分析运动类型,并将其与场景中特定对象关联,以便进行更高级别的处理,在这个过程中,光强变化无疑是帮助我们发现运动的第一个线索。因为可能会在某一时间点意外侦测到所有像素的变化,其中包括光线、阴影、噪声引起的变化,相对于过去,像素变化过快时,应该考虑的潜在变化。因此,应该在像素级实现一种低通存储器,跟踪像素对比变化,并在像素行为变化时发出报警。  本文介绍如何利用忆阻器实现上述算法。在上个世纪70年代,蔡少棠教授从理论上预言存在一种叫做忆阻器的无源器件,2008年惠普实验室演示了这种无源器件的物理模型,顾名义,忆阻器是一种可变电阻器,其导通状态能够

3、记忆以前流经忆阻器的电流历史。  本文主要内容如下:下一章介绍与输入偏压有关的忆阻器行为,特别是基于脉冲的编程,这是本文的研究基础。第三章介绍像素工作原理,第四章重点介绍像素实现。第五章介绍仿真结果,第六章是结论。  II.忆阻器行为  如前文所述,忆阻器可以视为一个时间可变的电阻器,电阻值取决于以前流经忆阻器的电流值。  图1:忆阻器和简化等效电路图。图a:TIO2忆阻器结构;图b:等效电阻器电路  首次提出的忆阻器概念的是蔡少棠教授,在推理无源电路理论的等式对称性依据时,他认为忆阻器是电阻器、电容器、电感器之外的第四个基础无源器件。在发现忆阻器物理模型后,很多人想利用忆阻器令人兴奋的记忆

4、特性开发模拟集成电路。惠普实验室开发的首个物理模型基于TIO2的两个区:一个高电阻的非掺杂区和一个有高导电氧空穴TIO2-x的掺杂区,这两个区夹在两个金属电极板的中间,如图1a所示。当向忆阻器施加外部偏压时,掺杂层和非掺杂层之间的边界就会移动,位移是所施加的电流或电压的函数,因此,带电荷的掺杂区的漂移导致两个电极之间电阻变化。对于简单的电阻导电情况,下面等式定义了电压电流关系:    利用参考文献取得与上面等式相关的参数,使用Verilog-A语言开发一个忆阻器行为模型,通过电路仿真,使用下列参数验证该模型:RON=200Ω,ROFF=200KΩ,u2=10-10cm2S-1V-1,D=10

5、nm。只要系统在M?(RON,ROFF)边界内,忆阻器就会表现出对称行为。当触达任何一个边界时,忆阻器将会像线性电阻一样动作,将边界电阻保持到输入极性变反为止。图2所示是典型的忆阻特性曲线,忆阻器这些有趣行为共同构成忆阻器或各类忆阻性设备的基本特征,图2a是施加电压及相应电流对时间t的曲线。图2b所示是电流-电压特性曲线。从图中不难看出,当w≤w0时,滞后出现,当w?w0时,滞后缩短。图2c是忆阻器在不平衡输入信号条件下的行为曲线,我们观察到,在前三个周期内,w(t)值逐渐升高,这是在一定时间内净电荷量累加的结果。在连续施加三个周期的极性相反的信号后,w(t)降至初始状态。总之,如图2a和2

6、b所示,任何对称交流偏压都会导致双环电流-电压滞后现象,高频时下降至一条直线。此外,对于偏压出现的任何非对称,如图2c和2d所示,我们观察到一个多环电流电压滞后,随着电流升高,多环电流电压滞后更加明显。  图2:电压驱动式忆阻器的行为仿真结果。在图a中,施加的对称输入电压(红色)和相应电流(蓝色)是时间的函数。图b是对称输入电流-电压特性曲线。下降线对应曲度更高的曲线。在图c中,非对称输入施加电压(红色)和相应电流(绿色)是时间的函数。图d是非对称输入电流-电压特性曲线。图a中的施加电压是±v0sin(w0t),而图c中的施加电压是±v0sin2(w0t),其中w0=2?f0=2?u2/D2

7、。  忆阻器初始电阻通常很大,施加极性相反的连续或脉冲电压可使电阻线性降至一个低电阻的谷底,如图3所示。施加极性相反的电压可使忆阻器恢复初始高电阻,恢复时间通常比直接恢复方法短很多。在图3中,忆阻器的初始电阻值很高,向忆阻器施加一序列占空比可控的脉冲频率wp=5w0、电流幅度ip=160uA的电流脉冲,以此可以向忆阻器写入数据。占空比越高,流经忆阻器的电荷量就越大,导电速度也就越快。忆阻器具有脉冲式非线性编程

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。