欢迎来到天天文库
浏览记录
ID:27460519
大小:463.00 KB
页数:10页
时间:2018-12-04
《AI的发展历史,有哪些关键里程碑?.doc》由会员上传分享,免费在线阅读,更多相关内容在应用文档-天天文库。
1、AI的发展历史,有哪些关键里程碑? 在回答人工智能达到了什么程度这个问题之前,需先了解人工智能的概念是什么? 人工智能(ArtificialIntelligence,AI)是指计算机像人一样拥有智能能力,是一个融合计算机科学、统计学、脑神经学和社会科学的前沿综合学科,可以代替人类实现识别、认知,分析和决策等多种功能。如当你说一句话时,机器能够识别成文字,并理解你话的意思,进行分析和对话等。 另外,了解一下AI的发展历史,有哪些关键里程碑? AI在五六十年代时正式提出,90年代,国际象棋冠军卡斯帕罗夫与”深蓝”计算机决
2、战,”深蓝”获胜,这是人工智能发展的一个重要里程碑。而2016年,Google的AlphaGo赢了韩国棋手李世石,再度引发AI热潮。今年,腾讯推出围棋软件”绝艺”大放异彩,这些都代表了特定时期AI发展的技术水平。 AI不断爆发热潮,是与基础设施的进步和科技的更新分不开的,从70年代personal计算机的兴起到2010年GPU、异构计算等硬件设施的发展,都为人工智能复兴奠定了基础。 同时,互联网及移动互联网的发展也带来了一系列数据能力,使人工智能能力得以提高。而且,运算能力也从传统的以CPU为主导到以GPU为主导,这对A
3、I有很大变革。算法技术的更新助力于人工智能的兴起,最早期的算法一般是传统的统计算法,如80年代的神经网络,90年代的浅层,2000年左右的SBM、Boosting、convex的methods等等。随着数据量增大,计算能力变强,深度学习的影响也越来越大。2011年之后,深度学习的兴起,带动了现今人工智能发展的高潮。 其次,AI有哪些研究领域和分支? 人工智能研究的领域主要有五层,最底层是基础设施建设,包含数据和计算能力两部分,数据越大,人工智能的能力越强。往上一层为算法,如卷积神经网络、LSTM序列学习、Q-Learning、深
4、度学习等算法,都是机器学习的算法。第三层为重要的技术方向和问题,如计算机视觉,语音工程,自然语言处理等。还有另外的一些类似决策系统,像reinforcementlearning(编辑注:增强学习),或像一些大数据分析的统计系统,这些都能在机器学习算法上产生。第四层为具体的技术,如图像识别、语音识别、机器翻译等等。最顶端为行业的解决方案,如人工智能在金融、医疗、互联网、交通和游戏等上的应用,这是我们所关心它能带来的价值。 值得一提的是机器学习同深度学习之间还是有所区别的,机器学习是指计算机的算法能够像人一样,从数据中找到信息,从
5、而学习一些规律。虽然深度学习是机器学习的一种,但深度学习是利用深度的神经网络,将模型处理得更为复杂,从而使模型对数据的理解更加深入。 机器学习有三类,第一类是无监督学习,指的是从信息出发自动寻找规律,并将其分成各种类别,有时也称”聚类问题”。第二类是监督学习,监督学习指的是给历史一个标签,运用模型预测结果。如有一个水果,我们根据水果的形状和颜色去判断到底是香蕉还是苹果,这就是一个监督学习的例子。最后一类为强化学习,是指可以用来支持人们去做决策和规划的一个学习方式,它是对人的一些动作、行为产生奖励的回馈机制,通过这个回馈机制促进学习
6、,这与人类的学习相似,所以强化学习是目前研究的重要方向之一。 再则,AI有哪些应用场景? 人工智能的应用场景主要有以下几个方面: 在计算机视觉上,2000年左右,人们开始用机器学习,用人工特征来做比较好的计算机视觉系统。如车牌识别、安防、人脸等技术。而深度学习则逐渐运用机器代替人工来学习特征,扩大了其应用场景,如无人车、电商等领域。 在语音技术上,2010年后,深度学习的广泛应用使语音识别的准确率大幅提升,像Siri、VoiceSearch和Echo等,可以实现不同语言间的交流,从语音中说一段话,随之将其翻译为另一种
7、文字;再如智能助手,你可以对手机说一段话,它能帮助你完成一些任务。与图像相比,自然语言更难、更复杂,不仅需要认知,还需要理解。 在自然语言处理上,目前一个比较重大的突破是机器翻译,这大大提高了原来的机器翻译水平,举个例子,Google的Translation系统,是人工智能的一个标杆性的事件。2010年左右,IBM的”Watson”系统在一档综艺节目上,和人类冠军进行自然语言的问答并获胜,代表了计算机能力的显著提高。 在决策系统上,决策系统的发展是随着棋类问题的解决而不断提升,从80年代西洋跳棋开始,到90年代的国际象棋
8、对弈,机器的胜利都标志了科技的进步,决策系统可以在自动化、量化投资等系统上广泛应用。 在大数据应用上,可以通过你之前看到的文章,理解你所喜欢的内容而进行更精准的推荐;分析各个股票的行情,进行量化交易;分析所有的像客户的一些喜好而
此文档下载收益归作者所有