欢迎来到天天文库
浏览记录
ID:27306397
大小:67.80 KB
页数:7页
时间:2018-12-02
《庞浩计量经济学第二章答案》由会员上传分享,免费在线阅读,更多相关内容在工程资料-天天文库。
1、第二章简单线性回归模型2.1(1)①首先分析人均寿命与人均GDP的数量关系,用Eviews分析:DependentVariable:YMethod:LeastSquaresDate:12/27/14Time:21:00Sample:122Includedobservations:22VariableCoefficientStd.Errort-StatisticProb. C56.647941.96082028.889920.0000X10.1283600.0272424.7118340.0001R-squared0.526082 Meandepe
2、ndentvar62.50000AdjustedR-squared0.502386 S.D.dependentvar10.08889S.E.ofregression7.116881 Akaikeinfocriterion6.849324Sumsquaredresid1013.000 Schwarzcriterion6.948510Loglikelihood-73.34257 Hannan-Quinncriter.6.872689F-statistic22.20138 Durbin-Watsonstat0.629074Prob
3、(F-statistic)0.000134有上可知,关系式为y=56.64794+0.128360x1②关于人均寿命与成人识字率的关系,用Eviews分析如下:DependentVariable:YMethod:LeastSquaresDate:11/26/14Time:21:10Sample:122Includedobservations:22VariableCoefficientStd.Errort-StatisticProb. C38.794243.53207910.983400.0000X20.3319710.0466567.1153080.0
4、000R-squared0.716825 Meandependentvar62.50000AdjustedR-squared0.702666 S.D.dependentvar10.08889S.E.ofregression5.501306 Akaikeinfocriterion6.334356Sumsquaredresid605.2873 Schwarzcriterion6.433542Loglikelihood-67.67792 Hannan-Quinncriter.6.357721F-statistic50.62761
5、 Durbin-Watsonstat1.846406Prob(F-statistic)0.000001由上可知,关系式为y=38.79424+0.331971x2③关于人均寿命与一岁儿童疫苗接种率的关系,用Eviews分析如下:DependentVariable:YMethod:LeastSquaresDate:11/26/14Time:21:14Sample:122Includedobservations:22VariableCoefficientStd.Errort-StatisticProb. C31.799566.5364344.86497
6、10.0001X30.3872760.0802604.8252850.0001R-squared0.537929 Meandependentvar62.50000AdjustedR-squared0.514825 S.D.dependentvar10.08889S.E.ofregression7.027364 Akaikeinfocriterion6.824009Sumsquaredresid987.6770 Schwarzcriterion6.923194Loglikelihood-73.06409 Hannan-Quin
7、ncriter.6.847374F-statistic23.28338 Durbin-Watsonstat0.952555Prob(F-statistic)0.000103由上可知,关系式为y=31.79956+0.387276x3(2)①关于人均寿命与人均GDP模型,由上可知,可决系数为0.526082,说明所建模型整体上对样本数据拟合较好。对于回归系数的t检验:t(β1)=4.711834>t0.025(20)=2.086,对斜率系数的显著性检验表明,人均GDP对人均寿命有显著影响。②关于人均寿命与成人识字率模型,由上可知,可决系数为0.716
8、825,说明所建模型整体上对样本数据拟合较好。对于回归系数的t检验:t(β2)=
此文档下载收益归作者所有