2018数学建模b“拍照赚钱”的任务定价模型

2018数学建模b“拍照赚钱”的任务定价模型

ID:27284959

大小:769.86 KB

页数:18页

时间:2018-12-02

2018数学建模b“拍照赚钱”的任务定价模型_第1页
2018数学建模b“拍照赚钱”的任务定价模型_第2页
2018数学建模b“拍照赚钱”的任务定价模型_第3页
2018数学建模b“拍照赚钱”的任务定价模型_第4页
2018数学建模b“拍照赚钱”的任务定价模型_第5页
资源描述:

《2018数学建模b“拍照赚钱”的任务定价模型》由会员上传分享,免费在线阅读,更多相关内容在工程资料-天天文库

1、.WORD完美.格式编辑.“拍照赚钱”的任务定价模型摘要本题要求分析“拍照赚钱”任务的服务模式,研究其定价规律,并设计新的任务定价方案,结合实际情况,修改定价模型,最终对新项目设计任务定价方案,并评价方案的实施效果。求解的具体流程如下:针对问题一:为了研究项目的定价规律,分析任务未完成的原因,利用附件一的信息,在地图上定位所有坐标的位置,发现任务集中在广东、东莞、佛山、深圳四市,分别标明每个城市的成功任务和失败任务。以深圳为例,对深圳市任务进行聚类分析,结果分成5类,由相应任务的定价可以得出,人口密集处定价较低,人口稀少处定价较高

2、的定价规律。将附件二的位置信息同理在地图上定位,分别计算任务周围的会员数,分析其与定价的联系。针对问题二:由问题一结果可知,任务定价与任务周围人数和任务周围人口密度等因素有关。利用网络爬虫爬取广州、东莞、佛山、深圳四市医院,学校,小区,超市四种人口密度较大场所的经纬度,统计成功任务周围十公里人口密集场所。用RBF神经网络模型,从而确定新的定价方案。将此方案与原方案进行比较,得出两种定价方案的差异。针对问题三:为了解决用户争相选择位置集中任务等问题,可将多个任务联合打包,以便用户更好得执行任务。利用问题二中RBF神经网络模型求出新的

3、定价方案下的任务定价;同问题一,求任意两个任务之间的距离。当两个任务之间的距离小于一定值时,便可将这两个任务种做打包处理。对于打包的任务,可将每个任务的定价结合附近会员的信息求出最终定价;对于未打包的任务,任务定价不变。针对问题四:为了对新项目设计定价方案,并评价方案的实施效果,将新项目中任务的位置定位于地图上,可以发现任务集中分布于两个区域,且两个区域距离较远,可认为互不影响。结合前面问题的分析,可知任务定价与区域的经济发展情况和用户到任务的距离有关。对用户而言,用户将优先选择距离较近且定价较高的任务,因此,可以使用灰度关联分析

4、的方法,建立不同任务对会员的吸引力,从而对定价方案做出评价。关键词:聚类分析、RBF神经、灰色关联分析法、网络爬虫.技术资料.专业整理..WORD完美.格式编辑.一、问题重述“拍照赚钱”是移动互联网下的一种自助式服务模式。用户下载APP,注册成为APP的会员,然后从APP上领取需要拍照的任务(比如上超市去检查某种商品的上架情况),赚取APP对任务所标定的酬金。APP是该平台运行的核心,而APP中的任务定价又是其核心要素。如果定价不合理,有的任务就会无人问津,而导致商品检查的失败。1.研究附件一中项目的任务定价规律,分析任务未完成的

5、原因。2.为附件一中的项目设计新的任务定价方案,并和原方案进行比较。3.实际情况下,多个任务可能因为位置比较集中,导致用户会争相选择,一种考虑是将这些任务联合在一起打包发布。在这种考虑下,如何修改前面的定价模型,对最终的任务完成情况又有什么影响?4.对附件三中的新项目给出你的任务定价方案,并评价该方案的实施效果。二、模型假设1.会员对任务没有主观偏好,不会因为自身原因不完成任务;2.各个任务难度相等,不影响会员的选择;3.假设会员与任务间的距离都是直线距离,不受道路、河流等的影响;4.问题中所有数据都真实有效。三、符号说明符号含义

6、r地球半径l两地之间的球面距离α,θ两地的纬度β两地的经度差P打包后总价四、问题分析4.1问题一分析问题一要求研究附件一中项目的定价规律,并分析任务未完成的原因。首先应在地图中找出附件一中所有任务的位置,确定任务的分布规律,同时将附件二中会员的位置定位于地图。观察出这些数据集中分布在广东、东莞、佛山、深圳四个城市。以深圳市为例,对深圳的任务进行聚类分析,分析聚类结果,从而得出项目的定价规律。分别计.技术资料.专业整理..WORD完美.格式编辑.算每个任务与所有会员之间的距离,结合每个任务周围十公里的会员数与任务的定价,确定任务未完

7、成的原因。4.2问题二分析问题一可明显看出任务价格与任务周围人数和任务所在地区人口密度等有关。利用网络爬虫爬取广州等四市医院、学校、小区、超市等人口密度大的场所,统计成功任务方圆十公里内的人口密度大的场所个数。使用RBF神经网络分析,用所获得的数据训练神经网络,从而确定新的任务定价方案。将新的任务定价方案与附件一中的任务定价做出比较,说明两种定价方案的不同情况。4.3问题三分析问题三要求将任务打包发布并设计新的定价方案,以解决用户争相选择等问题。利用问题二中RBF神经网络模型求出新的定价方案下的任务的定价;利用问题一中两点经纬度坐

8、标求出两点距离的计算方法求出每个任务与其他任务之间的距离,当两个任务之间的距离小于一定值时,便可将这两个任务种做打包处理。对于打包的任务,可将每个任务的定价结合附近会员的信息求出最终定价;对于未打包的任务,任务定价不变。4.4问题四分析问题四要求对

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。