欢迎来到天天文库
浏览记录
ID:27195948
大小:485.00 KB
页数:5页
时间:2018-12-01
《有限元法分析结果的误差影响.doc》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库。
1、有限元法分析结果的误差影响本文指出了有限元法分析结果的误差影响存在于其每一操作步骤,并对这些误差进行了归类分析。随后,结合工程实例,通过改变单元类型(形状和精度)、调整单元尺寸大小和应用多种分网方式,显示理想化误差和离散化误差对计算结果的影响。最后,提出建议和今后的研究方向。 一、引言 有限元法分析起源于50年代初杆系结构矩阵的分析。随后,Clough于1960年第一次提出了“有限元法”的概念。其基本思想是利用结构离散化的概念,将连续介质体或复杂结构体划分成许多有限大小的子区域的集合体,每一个子区域称为单元(或元素),单元的集合称为网格,实际的连续介质体(或结构体)可以看成是
2、这些单元在它们的节点上相互连接而组成的等效集合体;通过对每个单元力学特性的分析,再将各个单元的特性矩阵组集成可以建立整体结构的力学方程式,即力学计算模型;按照所选用计算程序的要求,输入所需的数据和信息,运用计算机进行求解。 当前,有限元方法/理论已经发展的相当成熟和完善,而计算机技术的不断革新,又在很大程度上推进了有限元法分析在工程技术领域的应用。然而,如此快速地推广和应用使得人们很容易忽视一个前提,即有限元分析软件提供的计算结果是否可靠、满足使用精度的前提,是合理地使用软件和专业的工程分析。只有这两者很好地结合,我们才能得到工程上切实可信的计算结果,否则只会在工程上造成极大的
3、浪费,甚至带来严重的工程事故。二、误差分析 有限元法分析一般包括四个步骤:物理模型的简化、数学模型的程序化、计算模型的数值化和计算结果的分析。每一个步骤在操作过程中都或多或少地引入了误差,这些误差的累积最终可能会对计算结果造成灾难性的影响,进而蒙蔽我们的认识和判断。 第一步,物理模型的简化,主要有几何实体、连接/装配关系、环境边界条件和材料特性的简化,进而构建数学模型。这些简化或者说假设,是必要的,也是必须的,但是也由此在模型中引入了理想化误差(idealizationerror)。有些理想化误差是非良性奇异的,比如几何实体简化时细节部位上忽略小的圆/倒角,连接/装配关系简
4、化时忽略焊缝和螺栓连接等,往往导致模型发生结构方面(诸如L形截面的角点)的奇异,即结构奇异(奇异的数学定义是在某一点处导数无穷);有些理想化误差是良性奇异的,比如边界条件简化时添加集中载荷和孤立点约束,导致模型发生边界条件的奇异,即边界奇异;其它理想化误差,比如几何实体简化时三维壳/面体简化为二维壳/面、三维梁简化为一维梁,边界条件简化时非均匀温度场和压力场简化为均匀温度场和压力场等,只会影响计算结果的准确度,不会引发计算结果方面的数值奇异,即应力奇异和位移奇异等。理想化误差是在有限元法分析开始之前引入的,因此我们不可能通过改进有限元分析技术来达到消除其的目的,而只能通过修改数学模
5、型本身来实现消除其的目的。 第二步,数学模型的程序化,主要有几何实体的单元离散、单元网格的装配连接、模型环境边界条件的添加,进而构建计算模型。几何实体的离散,和单元类型(形状和精度)、单元尺寸以及分网方式的选择有关,不可避免地会引入离散化误差(discretizationerror)。离散化误差,是根植于有限元法分析本身的,因此只能通过改进有限元分析技术或者技巧来尽力消除/减小这方面的误差,比如采用规则化的单元形状避免单元在形状上产生奇异(即单元奇异)、提高单元精度和增加网格密度减小计算方面的误差等方法。单元网格的装配连接一般采用MPC多点约束法,因而会引入人为误差(artif
6、icialerror),这方面误差的消除更多是需要长期计算经验的积累。模型环境边界条件的添加,其误差影响依赖于第一步的理想化简化。 第三步,计算模型的数值化,主要是用数值计算方法(程序求解器)求解、逼近真实的解析值,因而必然存在数值化误差(numericalerror)。数值计算方法的精度(非人为可控)越高,计算结果的误差就越小,但计算的工作量也越大。实际考虑到计算精度和计算资源的利用,必然要做一个适当的统一。 第四步,计算结果的分析,主要是利用数值计算结果来分析、评判,或预知真实的物理模型,由此也存在着认知误差(recognizederror)。认知误差的消除,一方面需要
7、真实物理试验的指导,另一方面依赖于分析人员的工程经验和认知能力。同时,不要忘记了我们的前提假设,即第一步物理模型的简化,或假设。 下文,将通过一个简单的例子来说明理想化误差和离散化误差对有限元法分析结果的影响。计算时,采用有限元数值分析软件ANSYS11.0版本,32位操作系统软件WindowsXP版本,HPxw4200服务器硬件平台,保证了程序求解器及其运行环境的统一,以消除数值化误差。三、实例分析 图1起竖支耳模型 图1中所示为工程上最常见的起竖支耳模型,
此文档下载收益归作者所有