欢迎来到天天文库
浏览记录
ID:26871515
大小:61.37 KB
页数:5页
时间:2018-11-29
《数学中 “单位1” 的巧用》由会员上传分享,免费在线阅读,更多相关内容在应用文档-天天文库。
1、数学中“单位1”的巧用笔者在几年小学毕业班数学教学实践中,深刻认识到:分数、百分数、工程问题,是小学生最难理解和难于掌握的内容,而这三种内容的应用题又是小学生更难的,而又必须掌握的知识之一。而单位“1”好比是解答这难题的一把金钥匙,利用得当可帮助学生理解题意、掌握解题思路、发展思维,提高学生解题能力和技巧,可起到事半功倍的作用。因此,教师在教学中引导学生掌握单位“1”的运用方法很有必要。 首先要让学生认清单位“1”,它不同于自然数中的“1”,它可表示数字“1”,更重要的是它在分数、百分数、比类,工程问题应用题中表示“一个单位、
2、一个整体”,这在教学中就叫单位“1”或“整体1”。故单位“1”可表示“一个总量、一个部分、一项工程的总量、一批物件”等。所有单位“1”的量叫标准量,与它相比的叫比较量,在解答应用题时,如单位“1”的量已知,就用单位“1”的量乘以所求量对应的分率;如求单位“1”的量,就用已知量除以已知量的对应分率。由于用单位“1”计算方法固定,故只要选好单位“1”,就可知计算方法,这就解决了学生不知用什么方法计算这一难题。而选择单位“1”一般以“总量、不变量、两者相比的后项、几分之几的对象”为单位“1”。下面谈谈单位“1”的运用。 一、单位
3、“1”在分数应用题中的运用 这类应用题一般把总量看作单位“1”。 例(1):一堆煤有50吨,用去3/5后,还剩多少吨? 分析:本题应把总量一堆煤看作单位“1”,用去的单位“1”的3/5,剩下的占单位“1”的(1-3/5)(剩下量对应分率),由于单位“1”量已知而用乘法,求剩下量列式为:50×(1-3/5)。 例(2):一堆煤,第一次运走总吨数的1/3,第二次运走总吨数的1/4,还剩65吨没运,求这堆煤有多少吨? 分析:本题与例(1)一样把总量看作单位“1”,剩下的占单位“1”的(1-1/3-1/4),但这题求单位“
4、1”的量而用除法,列式为:65÷(1-1/3-1/4)=156吨。 由上两例可知:当总量变化时,单位“1”在解题过程中起了关键作用。但当总量不变,总量里的几种部分量都变化时又怎样解呢? 例(3):甲乙两粮仓,甲仓存量吨数是乙仓的5倍,如从甲仓运出628吨粮存入乙仓,则乙仓存粮是甲的5倍,甲仓原有存粮多少吨? 分析:这题应把两仓总存粮数看作单位“1”,由于甲乙两仓存粮数前后发生变化,原来甲占两仓总量的5/(15),后来甲占两仓总量的1/(15),则原甲比后甲多的628吨的对应分率是(5/6-1/6)。故总量是628÷(5/6
5、-1/6),而原甲仓存粮为628÷(5/6-1/6)×5/6。因此,当总量不变,而分量都变化,还是用单位“1”,解题可起简便思路的作用。 如总量变,分量里有种变、有种不变的题呢?同样可用单位“1”法求解。 例(4):甲乙两人共储蓄人民币315元,甲储蓄的钱数占两人总数的7/8,甲取出一部分存款支援“希望工程”后,这时甲占两人总储量的5/11,这时甲乙两人储蓄总量是多少元? 分析:本题与上题比,仍把总量看作单位“1”,但原来和现在“1”表示的量是不同的,而乙在总量变化时自身不变,故应以乙占前后单位“1”的差,求出后来两人总量
6、。原来甲占7/8,乙占(1-7/8),乙有钱315×(1-7/8);后来甲占5/11,乙占(1-5/11),即后来两人储蓄总量的(1-5/11),是315×(1-7/8)÷(1-5/11)。于是可见,总量变化,同样可用单位“1”来求解,同样单位“1”起了解题中的桥梁作用。 二、单位“1”在“比类”应用题中的运用 这类应用题,一般先弄清是“谁比谁”,把“后者”看作单位“1”的量。 1、“份数比”类应用题 例(1):某工厂四月份烧煤120吨,比原计划节约了1/9,四月份原计划烧煤多少吨? 分析:本题是实际烧煤量与计
7、划量相比,故应把计划烧煤量看作单位“1”,则实际烧煤量相当于计划量的(1-1/9),求计划量可列式为120÷(1-1/9)=135(吨),因此,单位“1”在份数比类应用题中起关键作用。 2、“差比”类应用题也可用单位“1”求解 例(1):甲数是40,乙数是80。①求甲比乙多几分之几?②求乙比甲比少几分之几? 这类应用题可用公式“相差量÷标准量”,但上题①、②问的标准量发生变化,而计算结果不同。①(80-40)÷80=1/2;②(80-40)÷40=1。由上可知,单位“1”在“差比”类分数应用题解答中起了关键性的作用。 3
8、、“倍比”类分数应用题同样可用单位“1”求解 例(1):某校54人参加奥林匹克学校数学班学习,非录取学生人数比录取学生数的5/2倍还多12人,问这所学校有几个被录取? 分析:本题应把被录取人数看作单位“1”,如非录取学生人数减少12人,则非录取人数刚好是录取
此文档下载收益归作者所有