独立分量生物医学运用探究

独立分量生物医学运用探究

ID:26682035

大小:54.50 KB

页数:7页

时间:2018-11-28

独立分量生物医学运用探究_第1页
独立分量生物医学运用探究_第2页
独立分量生物医学运用探究_第3页
独立分量生物医学运用探究_第4页
独立分量生物医学运用探究_第5页
资源描述:

《独立分量生物医学运用探究》由会员上传分享,免费在线阅读,更多相关内容在工程资料-天天文库

1、独立分量生物医学运用探究ok3izationofMutualInformation,简记MMI)和信息或熵极大判据(Informax或MaximizationofEntropy,简记ME)应用最广。由于最基本的独立性判据应由概率密度函数(probabilitydensityfunction,简记pdf)引出,而工作时pdf一般是未知的,估计它又比较困难,因此通常采用一些途径绕过这一困难。常用的方法有两类:①把pdf作级数展开,从而把对pdf的估计转化为对高阶统计量的估计;②在图1的输出端引入非线性环节来建立优

2、化判据。后一作法实际上隐含地引入了高阶统计量。(1)互信息极小判据:统计独立性的最基本判据如下:令p(y-)是y-的联合概率密度函数,pi(yi)是y-中各分量的边际概率密度函数。当且仅当y-中各分量独立时有:p(y-)=∏Ni=1pi(yi)因此用p(y-)与∏i=1pi(yi)间的Kullback-Leibler散度作为独立程度的定量度量:I(y-)=KL[p(y-),∏Ni=1pi(yi)]=∫p(y-)log[p(y-)∏Ni=1pi(yi)]dy-(1)显然,I(y-)0,当且仅当各分量独立时I(y

3、-)=0。因此,互信息极小判据的直接形式是:在y-=Bx-条件下寻找B,使(1)式的I(y-)极小为了使判据实际可用,需要把I(y-)中有关的pdf展成级数。由于在协方差相等的概率分布中高斯分布的熵值最大,因此展开时常用同协方差的高斯分布作为参考标准。例如,采用Gram-Charlier展开时有:P(yi)PG(yi)=1+13!k2yih3(y-i)+14!k4yih4(yi)+…式中PG(yi)是与P(yi)具有同样方差(σ2=1)和均值(μ=0)的高斯分布。k3yi、k4yi是yi的三、四阶累计量(cu

4、mulant),hn(yi)是n阶Hermit多项式。此外还有许多其他展开办法,如Edgeax判据:这一判据的特点是在输出端逐分量地引入一个合适的非线性环节把yi转成ri(如图2)。可以证明,如果gi(·)取为对应信源的累积分布函数cdf(它也就是概率密度函数的积分),则使r-=(r1…rN)T的熵极大等效于使I(y-)极小,因此也可达使y-中各分量独立的要求。从而得到Infomax判据:在选定适当gi(·)后,寻找B使熵H(r-)极大需要指出的是,虽然理论上gi(·)应取为各信源的cdf,但实践证明此要求并

5、不很严格,有些取值在0~1之间的单调升函数也可以被采用,如sigmoid函数、tanh(·)等。估计H(r-)固然也涉及pdf,但由于其作用已通过gi(·)引入,所以可以不必再作级数展开而直接用自适应选代寻优步骤求解。文献中还提出了一些其他判据,如极大似然、非线性PCA等,但它们本质上都可统一在信息论的框架下,所以不再一一列举[1]。3处理算法优化算法可大致分为两类,即批处理与自适应处理。3.1批处理批处理比较成熟的方法有两类。较早提出的是成对旋转法[2],其特点是把优化过程分解成两步。先把x-(n)经axk

6、urt法、JADE法、SHIBBS法等,限于篇幅,本文不再叙述。近年来,提出的另一类方法是所谓“固定点”法(FixedPointMethod)[4,5],其思路虽来源于自适应处理,但最终算法属于批处理。简单地说,通过随机梯度法调节B阵来达到优化目标时,有:B(k+1)=B(k)+ΔB(k)ΔB(k)=-μεkB(k)式中k是选代序号,εk是瞬时目标函数。当到达稳态时必有[E是总集均值算子]:E[ΔB(k)]=0(2)如果ΔB(k)与B(k)有关,就可由(2)式解出B的稳态值。不过由于(2)式总是非线性方程,因

7、此求解时仍需要采用数值方法(如牛顿法、共轭梯度法等)迭代求解。实践证明,不论是收敛速度还是计算量,此法均优于前一种方法,而且它还可以根据需要逐次提取最关心的yi,因此是一类值得注意的方法。3.2结合神经网络的自适应处理结合神经网络的自适应处理算法的框图。1994年Cichocki提出的调节算法是:B(k+1)=B(k)+ΔB(k)ΔB(k)=μk[I-Ψ(y-k)ΦT(y-k)]B(k)式中Ψ、Φ都是N维矢量,其各元素都是单调升的非线性函数:Ψ(yk)=sgnyk·y2k,ΦTy-k=3tanh(10yk)所

8、得结果虽令人鼓舞,但是方法是经验性的。其后学者们从理论上沿着这一方向作了更深入的讨论,并发展出多种算法。概括地说,主要发展有以下几点:(1)引入自然梯度(或相对梯度)。按照最陡下降的随机梯度法推导出的系数调节公式往往具有如下一般形式:ΔB(k)=μk[B-T(k)-Ψ(y-k)x-Tk]式中的Ψ(y-k)视具体算法而异。Infomax法中Ψ(·)由所选用的g(·)决定;MMI法中则与yk的三、四阶矩

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。