傅里叶变换性质证明

傅里叶变换性质证明

ID:26324819

大小:252.56 KB

页数:12页

时间:2018-11-26

傅里叶变换性质证明_第1页
傅里叶变换性质证明_第2页
傅里叶变换性质证明_第3页
傅里叶变换性质证明_第4页
傅里叶变换性质证明_第5页
资源描述:

《傅里叶变换性质证明》由会员上传分享,免费在线阅读,更多相关内容在工程资料-天天文库

1、2.6傅里叶变换的性质2.6.1线性  若信号和的傅里叶变换分别为和,        则对于任意的常数a和b,有        将其推广,若,则        其中为常数,n为正整数。  由傅里叶变换的定义式很容易证明线性性质.  显然傅里叶变换也是一种线性运算,在第一章我们已经知道了,线性有两个含义:均匀性和叠加性。均匀性表明,若信号乘以常数a,则信号的傅里叶变换也乘以相同的常数a,即      叠加性表明,几个信号之和的傅里叶变换等于各个信号的傅里叶变换之和         2.6.2反褶与共轭性  设f(t)

2、的傅里叶变换为,下面我们来讨论信号反褶、共轭以及既反褶又共轭后,新信号的傅里叶变换。  (1)反褶  f(-t)是f(t)的反褶,其傅里叶变换为             (2)共轭             (3)既反褶又共轭         本性质还可利用前两条性质来证明: 设g(t)=f(-t),h(t)=g*(t),则           在上面三条性质的证明中,并没有特别指明f(t)是实函数还是复函数,因此,无论f(t)为实信号还是复信号,其傅里叶变换都满足下面三条性质         2.6.3奇偶虚实性 

3、 已知f(t)的傅里叶变换为。在一般情况下,是复函数,因此可以把它表示成模与相位或者实部与虚部两部分,即          根据定义,上式还可以写成        下面根据f(t)的虚实性来讨论F()的虚实性。  (1)f(t)为实函数  对比式(2-33)与(2-34),由FT的唯一性可得    (1.1)f(t)是实的偶函数,即f(t)=f(-t)  X()的积分项是奇函数,而奇函数在对称区间内的积分为零,故  这时X()=0,于是       可见,若f(t)是实偶函数,则F()也是实偶函数,即   左边反褶

4、,右边共轭  (1.2)f(t)是实的奇函数,即-f(t)=f(-t)  R()的积分项是奇函数,而奇函数在对称区间内的积分为零,故  这时R()=0,于是             可见,若f(t)是实奇函数,则F()是虚奇函数,即    左边反褶,右边共轭有了上面这两条性质,下面我们来看看一般实信号(即可能既不是偶信号,又不是奇信号,反正不清楚,或者说是没有必要关心信号的奇偶特性)的FT频谱特点。 2.6.4对称性  傅里叶变换与傅里叶反变换之间存在着对称关系,称为傅里叶变换的对称性质。若已知     F()=F

5、[f(t)]则有     F[f(t)]=2лf(-)  证明:因为       将变量t与互换,再将2乘过来,得          上式右边是傅里叶正变换定义式,被变换函数是F(t)  所以        F[F(t)]=2лf(-)  若f(t)为偶信号,即f(t)=f(-t),则有        F[F(t)]=2f()  从上式可以看出,当f(t)为偶信号时,频域和时域的对称性完全成立――即f(t)的频谱是F(),F(t)的频谱为f()。  若f(t)为奇信号,即f(t)=-f(-t),则有        

6、F[F(t)]=-2f()  利用FT的对称性,我们可以很方便地一些信号的傅里叶变换。下面我们举些例子来说明这一点。           2.6.5尺度变换  若F[f(t)]=F(),则                这里a是非零的实常数。  下面利用FT的定义及积分的性质,分a>0和a<0两种情形来证明傅里叶变换的尺度变换特性。  证明:因为            令at=x,  当a>0时   当a<0时   上述两种情况可综合成如下表达式:             由上可见,若信号f(t)在时域上压缩到原来

7、的1/a倍,则其频谱在频域上将展宽a倍,同时其幅度减小到原来的1/a。  尺度变换性质表明,在时域中信号的压缩对应于频域中信号频带的扩展,反之,信号的时域扩展对应于频域的压缩。对于a=-1的特殊情况,它说明信号在时域中沿纵轴反褶等效于在频域中频谱也沿纵轴反褶。  对傅里叶变换的尺度变换特性最通俗的解释可以采用生活中的实例来说明,在录音带快放时,其放音速度比原磁带的录制速度要快,这就相当于信号在时间上受到了压缩,于是其频谱就扩展,因而听起来就会感觉到声音发尖,即频率提高了。反之,当慢放时,放音的速度比原来速度要慢,听

8、起来就会感觉到声音浑厚,即低频比原来丰富了(频域压缩)。 2.6.6时间平移(延时)    下面进行证明  证明:  上式右边的积分项为傅里叶变换定义式,  于是可以得到              同理可以得到            2.6.7 时域微分  若F[f(t)]=F(),则                   证明:因为,两边对t求导,可得   

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。