欢迎来到天天文库
浏览记录
ID:26286719
大小:6.15 MB
页数:62页
时间:2018-11-26
《基于深度学习的图像超分辨率重建设计研究》由会员上传分享,免费在线阅读,更多相关内容在工程资料-天天文库。
1、WORD格式.可编辑毕业设计(论文)基于深度学习的图像超分辨率重建研究院别数学与统计学院专业名称信息与计算科学班级学号5133117学生姓名楚文玉指导教师张琨2017年06月10日专业知识.整理分享WORD格式.可编辑基于深度学习的图像超分辨率重建研究摘要人工神经网络凭借其超强的学习能力,使得人工智能得到迅猛的发展,让人工神经网络再次成为研究热点。目前深度学习已经广泛应用于计算机视觉,语音处理,自然语言处理等各个领域,甚至在某些领域已经起到了主导作用。单一图像超分辨率重建技术旨在将一个低分辨率图像经过一系列算法重构出对应的高分辨率图像。目前比较成熟的方法有基于频域法,
2、非均匀图像插值法,凸集投影法,最大后验概率法以及稀疏表示法。本文主要研究利用深度学习实现单一图像超分辨率重建。本文首先简要介绍人工神经网络的发展历程,然后介绍深度学习在计算机视觉方面的应用。然后介绍神经网络的一些理论知识,最后介绍深度学习中的卷积神经网络(CNN,ConvolutionalNeuralNetwork)。本文研究如何利用卷积神经网络实现超分辨率重建。卷积神经网络分为三层结构,第一层的作用是特征块的提取和表示,第二层的作用是非线性映射,第三层的作用是重建出高分辨率图像。本文首先将一个图像降采样再双三次插值作为低分辨率图像,作为卷积神经网络的输入,而高分辨率
3、图像作为卷积神经网络的输出,利用卷积神经网络建立低分辨率,高分辨率之间的映射。最后针对该模型进行改进,再加入一层作为特征提取。最后利用深度学习框架TensorFlow实现上述模型。最后研究快速超分辨率重建模型,并针对模型层数和过滤器大小进行改进,与先前实验做比对。关键字:超分辨率重建,卷积神经网络,深度学习,TensorFlow专业知识.整理分享WORD格式.可编辑ImageSuper-ResolutionUsingDeeplearningAuthor:ChuWen-yuTutor:ZhangKunAbstractArtificialNeuralNetworkbeca
4、useofitsstrongabilitytolearn,getrapiddevelopmentofartificialintelligence,lettheArtificialNeuralNetworkbecometheresearchupsurgeagain.Deeplearninghasbeenwidelyusedincomputervision,speechprocessing,naturallanguageprocessingandsoon.Thesuper-resolution(SR)techniqueisdesignedtorefactoralow-re
5、solutionimagethroughaseriesofalgorithmstoreconstructthecorrespondinghigh-resolutionimage.Currently,themethodoffrequencydomain,Non-uniformimageinterpolation,Projectionontoconvexset(POCS),Maximumaposterior(MPA)andsparsematrixmethodarethemorematuremethods.Thispapermainlyresearchestherealiz
6、ationofsuper-resolution(SR)reconstructionusingdeeplearning.Inthisthesis,firstisabriefintroductionofthedevelopmentofartificialneuralnetwork,thenintroducestheapplicationofdeeplearningincomputervision.Withthatintroducessometheoreticalknowledgeofneuralnetwork,andfinallyintroducestheconvolut
7、ionneuralnetwork(CNN)indeeplearning.Thisarticlemainlyresearcheshowtousetheconvolutionneuralnetwork(CNN)togetthesuper-resolutionreconstruction.Theconvolutionneuralnetworkcontainsthreestructures,theeffectofthefirstlayerisPatchextractionandrepresentation,thesecondisthefunctionofNo
此文档下载收益归作者所有