欢迎来到天天文库
浏览记录
ID:26214677
大小:960.50 KB
页数:123页
时间:2018-11-25
《机械工程测试技术基础(第三版)课后答案全集》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、机械工程测试技术基础习题解答1-1求周期方波(见图1-4)的傅里叶级数(复指数函数形式),划出
2、cn
3、–ω和φn–ω图,并与表1-1对比。图1-4周期方波信号波形图0tx(t)……A-A解答:在一个周期的表达式为.积分区间取(-T/2,T/2)所以复指数函数形式的傅里叶级数为,。没有偶次谐波。其频谱图如下图所示。
4、cn
5、φnπ/2-π/2ωωω0ω03ω05ω03ω05ω02A/π2A/3π2A/5π幅频图相频图周期方波复指数函数形式频谱图2A/5π2A/3π2A/π-ω0-3ω0-5ω0-ω0-3ω0-5ω01-3求指数函数的频谱。解答:单边指数衰减信号频谱图f
6、X(f)
7、A/a0φ(
8、f)f0π/2-π/21-4求符号函数(见图1-25a)和单位阶跃函数(见图1-25b)的频谱。tsgn(t)01-1tu(t)01图1-25题1-4图a)符号函数b)阶跃函数a)符号函数的频谱t=0处可不予定义,或规定sgn(0)=0。该信号不满足绝对可积条件,不能直接求解,但傅里叶变换存在。可以借助于双边指数衰减信号与符号函数相乘,这样便满足傅里叶变换的条件。先求此乘积信号x1(t)的频谱,然后取极限得出符号函数x(t)的频谱。符号函数tx1(t)01-1符号函数频谱fφ(f)0π/20f
9、X(f)
10、-π/2b)阶跃函数频谱在跳变点t=0处函数值未定义,或规定u(0)=1/2。阶跃信
11、号不满足绝对可积条件,但却存在傅里叶变换。由于不满足绝对可积条件,不能直接求其傅里叶变换,可采用如下方法求解。解法1:利用符号函数结果表明,单位阶跃信号u(t)的频谱在f=0处存在一个冲激分量,这是因为u(t)含有直流分量,在预料之中。同时,由于u(t)不是纯直流信号,在t=0处有跳变,因此在频谱中还包含其它频率分量。单位阶跃信号频谱f
12、U(f)
13、0(1/2)fφ(f)0π/2-π/2解法2:利用冲激函数根据傅里叶变换的积分特性1-5求被截断的余弦函数(见图1-26)的傅里叶变换。图1-26被截断的余弦函数ttT-TT-Tx(t)w(t)1001-1解:w(t)为矩形脉冲信号所以根据频移
14、特性和叠加性得:可见被截断余弦函数的频谱等于将矩形脉冲的频谱一分为二,各向左右移动f0,同时谱线高度减小一半。也说明,单一频率的简谐信号由于截断导致频谱变得无限宽。fX(f)Tf0-f0被截断的余弦函数频谱1-6求指数衰减信号的频谱指数衰减信号x(t)解答:所以单边指数衰减信号的频谱密度函数为根据频移特性和叠加性得:00X(ω)-ππφ(ω)ωω指数衰减信号的频谱图1-7设有一时间函数f(t)及其频谱如图1-27所示。现乘以余弦型振荡。在这个关系中,函数f(t)叫做调制信号,余弦振荡叫做载波。试求调幅信号的傅里叶变换,示意画出调幅信号及其频谱。又问:若时将会出现什么情况?图1-27题1-
15、7图ωF(ω)0f(t)0t-ωmωm解:所以根据频移特性和叠加性得:可见调幅信号的频谱等于将调制信号的频谱一分为二,各向左右移动载频ω0,同时谱线高度减小一半。fX(f)ω0-ω0矩形调幅信号频谱若将发生混叠。2-2用一个时间常数为0.35s的一阶装置去测量周期分别为1s、2s和5s的正弦信号,问稳态响应幅值误差将是多少?解:设一阶系统,,T是输入的正弦信号的周期稳态响应相对幅值误差,将已知周期代入得2-3求周期信号x(t)=0.5cos10t+0.2cos(100t−45°)通过传递函数为H(s)=1/(0.005s+1)的装置后得到的稳态响应。解:,,该装置是一线性定常系统,设稳态
16、响应为y(t),根据线性定常系统的频率保持性、比例性和叠加性得到y(t)=y01cos(10t+j1)+y02cos(100t−45°+j2)其中,,所以稳态响应为2-5想用一个一阶系统做100Hz正弦信号的测量,如要求限制振幅误差在5%以内,那么时间常数应取多少?若用该系统测量50Hz正弦信号,问此时的振幅误差和相角差是多少?解:设该一阶系统的频响函数为,t是时间常数则稳态响应相对幅值误差令d≤5%,f=100Hz,解得t≤523ms。如果f=50Hz,则相对幅值误差:相角差:2-7将信号coswt输入一个传递函数为H(s)=1/(ts+1)的一阶装置后,试求其包括瞬态过程在内的输出y
17、(t)的表达式。解答:令x(t)=coswt,则,所以利用部分分式法可得到利用逆拉普拉斯变换得到2-8求频率响应函数为3155072/(1+0.01jw)(1577536+1760jw-w2)的系统对正弦输入x(t)=10sin(62.8t)的稳态响应的均值显示。解:该系统可以看成是一个一阶线性定常系统和一个二阶线性定常系统的串联,串联后仍然为线性定常系统。根据线性定常系统的频率保持性可知,当输入为正弦信号时,其稳态响应仍然为同频率
此文档下载收益归作者所有