欢迎来到天天文库
浏览记录
ID:26179842
大小:160.88 KB
页数:7页
时间:2018-11-25
《《竖井联系测量》word版》由会员上传分享,免费在线阅读,更多相关内容在工程资料-天天文库。
1、竖井联系测量人民交通出版社一、竖井联系测量的任务在隧道施工中,常用竖井在隧道中间增加掘进工作面,从多面同时掘进,可以缩短贯通段的长度,提高施工进度。这时,为了保证相向开挖面能正确贯通,就必须将地面控制网中的坐标、方向及高程,经由竖井传递到地下去,这些传递工作称为竖井联系测量。其中坐标和方向的传递,称为竖井定向测量。通过定向测量,使地下平面控制网与地面上有统一的坐标系统。而通过高程传递则使地下高程系统获得与地面统一的起算数据。按照地下控制网与地面上联系的形式不同,定向的测量方法可分为下列四种:1.经过一个竖井定向(简称一井定向);2.经过两个竖井定向(简称两井定向);3.经过横洞
2、(平坑)与斜井的定向;4.应用陀螺经纬仪定向。竖井的联系测量可通过一个井筒、也可同时通过两个井筒进行。这种联系测量是利用地上、地下控制点之间的几何关系将坐标、方向和高程引入地下,故称几何定向。平峒的联系测量可通过一个井筒、也可同时通过两个井筒进行。这种联系测量是利用地上、地下控制点之间的几何关系将坐标、方向和高程引入地下。由于平峒隧道有进口和出口,导线和水准线路可从隧道两端引进,大大缩短贯通长度。其作业方法与地面控制测量相同。斜井的联系测量方法与平峒基本相同。不同处是隧道坡度较大,导线测量要注意坡度的影响。另外,斜井大部分为单头掘进,从洞口引进的导线均为支导线,要加强检核,以防
3、止联系测量出现错误。由于陀螺仪技术的飞速发展,在导航和测量工作中已被广泛应用。陀螺仪重量轻、体积小、精度高、使用方便,在隧道联系测量工作中,不失为一种经济、快速、影响小的现代化定向仪器。高程联系测量是将地面高程引入地下,又称导入高程。显而易见,为使地下隧道(巷道)贯通,地上、地下的控制点必须在同一个坐标系统和高程系统。地下工程与地面工程的相对位置也必须正确无误;地下建(构)筑物的相对关系,也必须精确。如此种种,说明联系测量是非常重要的。几何定向几何定向分一井定向和两井定向。1.一井定向一井定向是在井筒内挂两根钢丝,钢丝的上端在地面,下端投到定向水平。在地面测算两钢丝的坐标,同时
4、在井下与永久控制点连接,如此达到将一点坐标和一个方向导入地下的目的。定向工作分投点和连接测量两部分。⑴投点投点所用垂球的重量与钢丝的直径随井深而异。井深小于100m时,垂球重30~50kg;大于100m时为50~100kg。钢丝的直径大小决定于垂球的重量。例如钢丝Φ=1.0mm的悬挂垂球重量可达90~100kg;Φ=2.0mm,球重达360~370kg。投点时,先用小垂球(2kg)将钢丝下放井下,然后换上大垂球。并置于油桶或水桶内,使其稳定(如图13-5)由于井筒内受气流、滴水的影响,使垂球线发生偏移和不停的摆动,故投点分稳定投点和摆动投点。稳定投点是指垂球的摆动振幅不大于0.
5、4mm时,即认为垂球线是稳定的,可进行井上井下同时观测;垂球摆动振幅大于0.4mm时,则按照观测摆动的振幅度求出静止位置,并将其固定。⑵连续测量同时在地面和定向水平上对垂球线进行观测,地面观测是为了求得两垂球线的坐标及其连线的方位角;井下观测是以两垂球的坐标和方位角推算导线起始点的坐标和起始边的方位角。连接测量的方法很多,但普遍使用的是连接三角形法。图13-5竖井定向如图13-6所示,D点与C点分别为地面上近井点和连接点。A、B为两垂球线,C′、D′和E′为地下永久导线点。在井上下分别分别安置经纬仪于C和C′点,观测φ、ψ、γ和φ′、ψ′、γ′。测量边长a、b、c和CD,以及井
6、下的a′、b′、c′和C′D′。由此,在井上下形成以AB为公共边的△ABC和△ABC′。由图可看出,已知D点坐标和DE边的方位角,观测三角形的各边长a、b、c及γ角,就可推算井下导线起始边的方位角和D′点的坐标。选择C和C′时应满足如下要求:①CD和CD长度应大于20m;②C和C′点应尽可能在AB的延长线上,即γ′、α和γ′、β′不应大于2°。③b/c、b′/c一般应小于1.5,即C和C′应尽量靠近垂球线。图13-6用连接三角形法在井下定向水平角的观测要用DJ6以上的经纬仪,对中三次,具体要求见表13-1。水平角的观测要求(表13-1)仪器级别水平角观测方法测回法测角中误差半测
7、回零差各测回互差重新对中测回间互差DJ2全圆方向观测法3±6″12″12″72″DJ6全圆方向观测法6±12″30″30″量边要使用检验过的钢尺,施加标准拉力和测记温度。用钢尺从不同起点丈量6次,读至0.5mm,观测值互差不大于2mm,取其平均值作为最后结果。井上、井下同时量得两垂球线之间的间距之差不得大于2mm。(3)内业计算在△CBA和△ABC′两个三角形中,c和c′为直接丈量的边长,同时也可用余弦定理进行计算:c2算=a2+b2-2ab.cosγc2算=a′2+b′2-2a′b′.co
此文档下载收益归作者所有