关于-椭圆离心率求法

关于-椭圆离心率求法

ID:26114933

大小:277.50 KB

页数:7页

时间:2018-11-24

关于-椭圆离心率求法_第1页
关于-椭圆离心率求法_第2页
关于-椭圆离心率求法_第3页
关于-椭圆离心率求法_第4页
关于-椭圆离心率求法_第5页
资源描述:

《关于-椭圆离心率求法》由会员上传分享,免费在线阅读,更多相关内容在应用文档-天天文库

1、水深火热的演练一、直接求出或求出a与b的比值,以求解。在椭圆中,,1.已知椭圆的长轴长是短轴长的2倍,则椭圆的离心率等于3.若椭圆经过原点,且焦点为,则椭圆的离心率为4.已知矩形ABCD,AB=4,BC=3,则以A、B为焦点,且过C、D两点的椭圆的离心率为。5.若椭圆短轴端点为满足,则椭圆的离心率为。6..已知则当mn取得最小值时,椭圆的的离心率为8.已知F1为椭圆的左焦点,A、B分别为椭圆的右顶点和上顶点,P为椭圆上的点,当PF1⊥F1A,PO∥AB(O为椭圆中心)时,椭圆的离心率为。9.P是椭圆+=1(a>b>0)上一点,是椭圆的左右焦点,已知椭圆的

2、离心率为10.已知是椭圆的两个焦点,P是椭圆上一点,若,则椭圆的离心率为13.椭圆(a>b>0)的两顶点为A(a,0)B(0,b),若右焦点F到直线AB的距离等于∣AF∣,则椭圆的离心率是。14.椭圆(a>b>0)的四个顶点为A、B、C、D,若四边形ABCD的内切圆恰好过焦点,则椭圆的离心率是15.已知直线L过椭圆(a>b>0)的顶点A(a,0)、B(0,b),如果坐标原点到直线L的距离为,则椭圆的离心率是16.在平面直角坐标系中,椭圆1(0)的焦距为2,以O为圆心,为半径作圆,过点作圆的两切线互相垂直,则离心率=17.设椭圆的离心率为,右焦点为,方程的

3、两个实根分别为和,则点( A )A.必在圆内B.必在圆上C.必在圆外D.以上三种情形都有可能二、构造的齐次式,解出1.已知椭圆的焦距、短轴长、长轴长成等差数列,则椭圆的离心率是2.以椭圆的右焦点F2为圆心作圆,使该圆过椭圆的中心并且与椭圆交于M、N两点,椭圆的左焦点为F1,直线MF1与圆相切,则椭圆的离心率是3.以椭圆的一个焦点F为圆心作一个圆,使该圆过椭圆的中心O并且与椭圆交于M、N两点,如果∣MF∣=∣MO∣,则椭圆的离心率是4.设椭圆的两个焦点分别为F1、、F2,过F2作椭圆长轴的垂线交椭圆于点P,若△F1PF2为等腰直角三角形,则椭圆的离心率是5

4、.已知F1、F2是椭圆的两个焦点,过F1且与椭圆长轴垂直的直线交椭圆于A、B两点,若△ABF2是正三角形,则这个椭圆的离心率是三、寻找特殊图形中的不等关系或解三角形。1.已知、是椭圆的两个焦点,满足的点总在椭圆内部,则椭圆离心率的取值范围是2.已知是椭圆的两个焦点,P是椭圆上一点,且,椭圆离心率e的取值范围为3.已知是椭圆的两个焦点,P是椭圆上一点,且,椭圆离心率e的取值范围为4.设椭圆(a>b>0)的两焦点为F1、F2,若椭圆上存在一点Q,使∠F1QF2=120º,椭圆离心率e的取值范围为5.在中,,.若以为焦点的椭圆经过点,则该椭圆的离心率.6.设分

5、别是椭圆()的左、右焦点,若在其右准线上存在使线段的中垂线过点,则椭圆离心率的取值范围是7.如图,正六边形ABCDEF的顶点A、D为一椭圆的两个焦点,其余四个顶点B、C、E、F均在椭圆上,则椭圆离心率的取值范围是关于双曲线离心率一、利用双曲线性质例1设点P在双曲线的左支上,双曲线两焦点为,已知是点P到左准线的距离和的比例中项,求双曲线离心率的取值范围。解析:由题设得:。由双曲线第二定义得:,由焦半径公式得:,则,即,解得。归纳:求双曲线离心率取值范围时可先求出双曲线上一点的坐标,再利用性质:若点在双曲线的左支上则;若点在双曲线的右支上则。二、利用平面几何

6、性质例2设点P在双曲线的右支上,双曲线两焦点,,求双曲线离心率的取值范围。解析:由双曲线第一定义得:,与已知联立解得:,由三角形性质得:解得:。归纳:求双曲线离心率的取值范围时可利用平面几何性质,如“直角三角形中斜边大于直角边”、“三角形两边之和大于第三边”等构造不等式。三、利用数形结合例3(同例2)解析:由例2可知:,点P在双曲线右支上由图1可知:,,即,两式相加得:,解得:。四、利用均值不等式例4已知点在双曲线的右支上,双曲线两焦点为,最小值是,求双曲线离心率的取值范围。解析:,由均值定理知:当且仅当时取得最小值,又所以,则。五、利用已知参数的范围例

7、5(2000年全国高考题)已知梯形ABCD中,,点E分有向线段所成的比为,双曲线过C、D、E三点,且以A、B为焦点,当时,求双曲线离心率的取值范围。解析:如图2建立平面直角坐标系,设双曲线方程为,设其中是梯形的高,由定比分点公式得,把C、E两点坐标分别代入双曲线方程得,,两式整理得,从而建立函数关系式,由已知得,,解得。六、利用直线与双曲线的位置关系例6已知双曲线与直线:交于P、Q两个不同的点,求双曲线离心率的取值范围。解析:把双曲线方程和直线方程联立消去得:时,直线与双曲线有两个不同的交点则,,即且,所以,即且。七、利用点与双曲线的位置关系例7已知双曲

8、线上存在P、Q两点关于直线对称,求双曲线离心率的取值范围。解析:设,弦PQ中点为

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。