分析继电保护中的人工智能技术及其应用

分析继电保护中的人工智能技术及其应用

ID:26046063

大小:51.50 KB

页数:6页

时间:2018-11-24

分析继电保护中的人工智能技术及其应用_第1页
分析继电保护中的人工智能技术及其应用_第2页
分析继电保护中的人工智能技术及其应用_第3页
分析继电保护中的人工智能技术及其应用_第4页
分析继电保护中的人工智能技术及其应用_第5页
资源描述:

《分析继电保护中的人工智能技术及其应用》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、分析继电保护中的人工智能技术及其应用分析继电保护中的人工智能技术及其应用  人工智能技术是通过模拟人类分析问题的思维模式,采用智能手段处理问题的技术。这种技术在实际应用中,能够有助于人们处理一些较为复杂的、并且难以通过数学模型进行求解的问题,提高问题的处理效率。在电力系统中,采用人工智能技术对系统中存在的故障进行检测和处理,为电力系统继电保护工作的研究与发展提供了新方法。  一、继电保护中的人工智能技术  (一)专家系统  专家系统也简称为ES系统,它是发展最早的、起到继电保护作用的智能系统。同时,它也是在人工智能系统中应用最广泛、研究最深入的课题之一,这项智能系

2、统与整个知识工程的研究是紧密相连的。专家系统的构造,主要涉及本文由.L.收集整理了它对知识的表达形式、知识的运用、知识的处理等方面的研究方法以及理论知识。这个系统不单单结合理论知识来解决一些定性的问题,同时,还通过一种启发式的知识,例如,专家经验等解决问题。这样一来,通过这一系统的使用,就可以在解决问题时缩小知识的搜索的范围,进而提高解决问题的效率。除此之外,专家系统当中的解释模块,可以对一些在推理过程中使用到的知识、推理过程、推理结论进行进一步的解释说明。  在电力系统中的继电保护专家系统当中,通常所使用的表达知识的方式主要有以下几种:生产模式下的规则表示方法、

3、框架模式下的表示方法、过程模式下的知识表示方法、面向对象的表示方法、知识模型的表示方法。其中,面向对象的表示方法和知识模型的表示方法是在智能技术、语言技术以及计算机技术发展的基础上形成的。专家系统在继电保护的管理以及整定工作当中得到了广泛的使用。一旦电力系统的运行模式发生改变、引进新的设备或者设备进行检修,面对这些现象,专家系统的定值以及相应的保护配置都会发生改变。另外,专家系统还可以依据其自身的运行规程、电网结构以及专家经验等功能,来对协助系统的应用人员做出保护对策。在人工智能系统中的专家系统虽然可以模拟专家来对继电保护工作做出相应的决策,但是,这种智能系统在实

4、际使用的过程中还存在一些不足之处。例如,该系统在建立知识库以及维护知识库的方面还不是很完善,并且容错能力差,特别是在对一些难度较大、复杂程度较高的故障进行推理时,系统的反应速度较慢。以上种种不足,都会在一定程度上影响专家系统对继电保护的精准程度。  (二)人工智能系统中的模糊理论  模糊理论简称为FST理论,这个理论通过模糊隶属度这一概念来表述一些不确定、不精准的现象和事件。同时,在模糊理论当中引进了近似推理以及语言变量等模糊逻辑,通过这样的形式,来表达一些经验知识。通过对这一理论多年的探索和研究,如今,它终于成为能够具备一套完整推理体系的继电保护智能技术,并且被

5、广泛的运用到电力系统当中。人们在对一件事物进行了解和认识时,过程往往都是在一定层面上来对失误进行辨别和划分,在这期间,并不需要精准的、复杂的计算。然而,模糊理论在解决问题时正是采用了模糊模式,为事物的识别工作提供了便捷、有效的途径。在整个电力系统当中,会存在很多电气量,通过微机保护能够在这方面对人类辨别失误的能力进行模仿,并且可以区分和辨别不同对象的特征,最后,利用智能化系统来实现对事物更高的辨别性能。  在进行电力系统中的继电保护工作时,智能模糊理论已经被广泛的应用,并且在一些领域上有了更新的进展。例如,发动机的保护工作、主变保护以及线路保护等等。但是,在模糊理

6、论的应用过程中也会存在一些问题,例如,它在针对复杂的系统进行模辨识、建立、修改,以及对隶属度方面的获取都还没有得到进一步的完善。因此,这个系统在实际应用中并不具备一定的学习能力,自然,在使用的过程中会受到一些条件的制约,进而导致其功能不能很好的发挥出来。  (三)人工神经网络  人工神经网络这一系统的工作原理是最大限度上模拟人类的认知过程和人脑内部的组织结构,通过这样的形式来对相关信息进行处理。人工神经网路系统自身具备很多优势,例如,它具备联想记忆功能、适应能力强,可以进行并行分布处理等等。因此,这项系统凭借自身的优势在继电保护工作中得到了重视,并且广泛应用。在使

7、用人工神经网络对电力系统中的故障进行检查时,它的诊断方法会与专家系统存在一定的差异性。人工神经系统更加注重于通过对标准样本的训练与学习,进而对系统内部的阈值和连接权进行调整,这样一来,就可以让知识分布在网络上,形成人工神经网络的记忆模式。由此可见,人工神经网络系统在获取知识方面的能力十分强大,同时,它能够有效的对含噪声的数据进行处理,这在一定程度上弥补了专家系统在对故障检测时存在的不足。人工神经网由于本身属于非线性的反射,所以,它可以通过这一方法来解决一些较为复杂的、并且难以求解的非线性问题,这也是它能够在继电保护工作中得到广泛应用的原因之一。最近几年以来,在电力

8、系统的继电

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。