线性代数知识点归纳

线性代数知识点归纳

ID:25941839

大小:1.88 MB

页数:20页

时间:2018-11-23

线性代数知识点归纳_第1页
线性代数知识点归纳_第2页
线性代数知识点归纳_第3页
线性代数知识点归纳_第4页
线性代数知识点归纳_第5页
资源描述:

《线性代数知识点归纳》由会员上传分享,免费在线阅读,更多相关内容在应用文档-天天文库

1、·线性代数复习要点第一部分行列式1.排列的逆序数2.行列式按行(列)展开法则3.行列式的性质及行列式的计算行列式的定义1.行列式的计算:①(定义法)②(降阶法)行列式按行(列)展开定理:行列式等于它的任一行(列)的各元素与其对应的代数余子式的乘积之和.推论:行列式某一行(列)的元素与另一行(列)的对应元素的代数余子式乘积之和等于零.···③(化为三角型行列式)上三角、下三角、主对角行列式等于主对角线上元素的乘积.④若都是方阵(不必同阶),则⑤关于副对角线:⑥范德蒙德行列式:⑦型公式:⑧(升阶法)在原行列式中增加一行一列,保

2、持原行列式不变的方法.⑨(递推公式法)对阶行列式找出与或,之间的一种关系——称为递推公式,其中,,等结构相同,再由递推公式求出的方法称为递推公式法.(拆分法)把某一行(或列)的元素写成两数和的形式,再利用行列式的性质将原行列式写成两行列式之和,使问题简化以例计算.⑩(数学归纳法)2.对于阶行列式,恒有:,其中为阶主子式;3.证明的方法:···①、;②、反证法;③、构造齐次方程组,证明其有非零解;④、利用秩,证明;⑤、证明0是其特征值.4.代数余子式和余子式的关系:第二部分矩阵1.矩阵的运算性质2.矩阵求逆3.矩阵的秩的性质

3、4.矩阵方程的求解1.矩阵的定义由个数排成的行列的表称为矩阵.记作:或同型矩阵:两个矩阵的行数相等、列数也相等.矩阵相等:两个矩阵同型,且对应元素相等.矩阵运算a.矩阵加(减)法:两个同型矩阵,对应元素相加(减).b.数与矩阵相乘:数与矩阵的乘积记作或,规定为.c.矩阵与矩阵相乘:设,,则,其中注:矩阵乘法不满足:交换律、消去律,即公式不成立.···a.分块对角阵相乘:,b.用对角矩阵乘一个矩阵,相当于用的对角线上的各元素依次乘此矩阵的向量;c.用对角矩阵乘一个矩阵,相当于用的对角线上的各元素依次乘此矩阵的向量.d.两个同

4、阶对角矩阵相乘只用把对角线上的对应元素相乘.④方阵的幂的性质:,⑤矩阵的转置:把矩阵的行换成同序数的列得到的新矩阵,叫做的转置矩阵,记作.a.对称矩阵和反对称矩阵:是对称矩阵.是反对称矩阵.b.分块矩阵的转置矩阵:⑥伴随矩阵:,为中各个元素的代数余子式.,,.分块对角阵的伴随矩阵:···矩阵转置的性质:矩阵可逆的性质:伴随矩阵的性质:(无条件恒成立)2.逆矩阵的求法方阵可逆.①伴随矩阵法:②初等变换法③分块矩阵的逆矩阵:④,⑤配方法或者待定系数法(逆矩阵的定义)3.行阶梯形矩阵可画出一条阶梯线,线的下方全为;每个台阶只有一

5、行,台阶数即是非零行的行数,阶梯线的竖线后面的第一个元素非零.当非零行的第一个非零元为1,且这些非零元所在列的其他元素都是时,称为行最简形矩阵4.初等变换与初等矩阵对换变换、倍乘变换、倍加(或消法)变换初等变换初等矩阵初等矩阵的逆初等矩阵的行列式()()···()☻矩阵的初等变换和初等矩阵的关系:对施行一次初等变换得到的矩阵,等于用相应的初等矩阵乘;对施行一次初等变换得到的矩阵,等于用相应的初等矩阵乘.注意:初等矩阵是行变换还是列变换,由其位置决定:左乘为初等行矩阵、右乘为初等列矩阵.3.矩阵的秩关于矩阵秩的描述:①、,中

6、有阶子式不为0,阶子式(存在的话)全部为0;②、,的阶子式全部为0;③、,中存在阶子式不为0;☻矩阵的秩的性质:①≥;;≤≤②③④⑤≤⑥若、可逆,则;即:可逆矩阵不影响矩阵的秩.⑦若;若⑧等价标准型.⑨≤,≤≤⑩,···☻求矩阵的秩:定义法和行阶梯形阵方法6矩阵方程的解法():设法化成第三部分线性方程组1.向量组的线性表示2.向量组的线性相关性3.向量组的秩4.向量空间5.线性方程组的解的判定6.线性方程组的解的结构(通解)(1)齐次线性方程组的解的结构(基础解系与通解的关系)(2)非齐次线性方程组的解的结构(通解)1.线

7、性表示:对于给定向量组,若存在一组数使得,则称是的线性组合,或称称可由的线性表示.线性表示的判别定理:可由的线性表示由个未知数个方程的方程组构成元线性方程:①、有解②、···③、(全部按列分块,其中);④、(线性表出)⑤、有解的充要条件:(为未知数的个数或维数)2.设的列向量为,的列向量为,则,为的解可由线性表示.即:的列向量能由的列向量线性表示,为系数矩阵.同理:的行向量能由的行向量线性表示,为系数矩阵.即:3.线性相关性···判别方法:法1法2法3推论···♣线性相关性判别法(归纳)♣线性相关性的性质①零向量是任何向量

8、的线性组合,零向量与任何同维实向量正交.②单个零向量线性相关;单个非零向量线性无关.③部分相关,整体必相关;整体无关,部分必无关.(向量个数变动)④原向量组无关,接长向量组无关;接长向量组相关,原向量组相关.(向量维数变动)⑤两个向量线性相关对应元素成比例;两两正交的非零向量组线性无关.⑥向量组中任一向

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。